Trong không gian với hệ tọa độ Oxyz, cho hình chóp có đỉnh S ( 2 ; 3 ; 5 ) và đáy là một đa giác nằm trong mặt phẳng (P): 2 x + y - 2 z - 3 = 0 , có diện tích bằng 12. Tính thể tích của khối chóp đó.
A. 4
B. 24
C. 8
D. 72
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn đáp án A
Lấy điểm C trong mặt phẳng (ABD) sao cho ABCD là hình chữ nhật
Do vậy, tâm mặt cầu ngoại tiếp hình chóp là trung điểm
Cách 2: Gọi I(a;b;c) là tâm mặt cầu ngoại tiếp hình chóp là trung điểm S.ABCD. Ta có:
STUDY TIP |
Khi xác định tâm mặt cầu ngoại tiếp hình chop hoặc lăng trụ ta có thể làm theo hai hường: + Hướng 1: Dùng điều kiện tâm cách đều các đỉnh đi đến giải hệ phương trình + Hướng 2: Dựa vào tính đặc biệt của hình như: Hình chop đều, hình chop có các đỉnh cùng nhìn một cạnh dưới một góc vuông |
Đáp án C.
Chiều cao của khối chóp có độ dài bằng d S , P = 2 .
Suy ra thể tích khối chóp đã cho là V = 1 3 . 12 . 2 = 8 .