K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 3 2017

Đáp án D

Ta có bước sóng  λ   =   v f = 3(cm)

Mọi điểm nằm trên Elip có tiêu điểm là A và B đều có cùng pha dao động.

20 tháng 1 2018

Chọn D.

24 tháng 2 2017

Đáp án A

Bước sóng λ = v/f = 30/20 = 1,5 cm

+ Số điểm dao động với biên độ cực đại trên đoạn BM là số giá trị nguyên của k thỏa mãn:

 

→ Có 19 điểm

2 tháng 1 2020

A

1 tháng 11 2018

Chọn đáp án A

0cm

22 tháng 10 2018

Đáp án C

Bước sóng của sóng λ   =   2 π v ω   =   2 π . 90 40 = 4 , 5 c m .

Biên độ dao động của M:  a M   =   2 a cos π M A - M B λ   =   2 . 2 cos π 10 , 5 - 9   =   2 c m

9 tháng 9 2018

Đáp án: A

HD Giải:  λ = 80 2 π 100 π = 1,6cm

M cùng pha với nguồn A nên MA = d = (được rút ra từ phương trình sóng tại M với d1 = d2 = d)

Ta có điều kiện MA > AO = AB/2 nên

<=> 1,6k > 6

<=> k > 3,75

MA nhỏ nhất nên chọn k = 4

MA = 4.1,6 = 6,4 cm

26 tháng 2 2018

Xem Hình II.5G.

Giải sách bài tập Vật Lí 12 | Giải sbt Vật Lí 12

Trước hết ta tìm số vân cực đại trên toàn mặt thoáng. Đó cũng là số vân cực đại trên đoạn AB. Vì hai nguồn kết hợp dao động ngược pha nên ta có :

d 1 - d 2  = (k + 1/2) λ

Giải sách bài tập Vật Lí 12 | Giải sbt Vật Lí 12

Vì 0 <  d 2  < 20 (cm) ⇒ k = -13,..., -12, -1,0, 1.., 12

Bây giờ ta xét số vân cực đại trên đoạn BM.

-20 <  d 2 - d 1  < 20( 2 - 1)(cm)

-20 < (k + 1/2).3/2 ≤ 2 - ( 2  - 1)

⇒ k = -13, -12 ...-1.0, 1,..., 5 ⇒ 19 điểm.

15 tháng 12 2019

Đáp án A

27 tháng 10 2021

<Em ko bt có đề là như thế hay là mình chép lộn không nhưng đây là cách làm tìm "Số điểm dao động với biên độ cực đại trên đoạn BM " Chị tham thảo nha.>

THAM THẢO

undefined

+ Gọi H là một điểm bất kì nằm trên BM. Tương tự, để H cực đại thì

 \(d_1-d_2=\left(k+\dfrac{1}{2}\right)\lambda\)

+ Từ hình vẽ ta thấy khoảng giá trị của hiệu số

\(\dfrac{d_1-d_2}{AM-\sqrt{2}AM}\le d_1-d_2\le AB\)

+ Kết hợp hai phương trình trên ta thu được

\(\dfrac{\left(k+\dfrac{1}{2}\right)\lambda}{AM-\sqrt{2}AM}\le\left(k+\dfrac{1}{2}\right)\lambda\le AB\)

\(\Leftrightarrow\dfrac{AM\left(1-\sqrt{2}\right)}{\lambda}-\dfrac{1}{2}\le k\le\dfrac{AB}{\lambda}-\dfrac{1}{2}\)

\(\Rightarrow-6,02\le k\le12,8\)

Vậy sẽ có 19 điểm dao động với biên độ cực đại trên đoạn BM.