Cho hai góc kề bù và sao cho
a) Tính số đo .
b) Trên cùng một nửa mặt phẳng bờ chứa tia Oy có chứa tia Oz, ta vẽ tia On sao cho . Chứng tỏ rằng tia On là tia phân giác của .
c) Vẽ tia phân giác Om của . Tính số đo .
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo đề bài, ta có \widehat{nOz}=\frac{1}{2}\widehat{xOz},\widehat{mOz}=\frac{1}{2}\widehat{zOy}nOz=21xOz,mOz=21zOy.
Mặt khác, \widehat{xOz},\widehat{zOy}xOz,zOy là hai góc kề bù nên \widehat{xOz}+\widehat{zOy}=180^o.xOz+zOy=180o.
Do đó \widehat{nOm}=\widehat{nOz}+\widehat{mOz}=\frac{1}{2}\left(\widehat{xOz}+\widehat{yOz}\right)=90^onOm=nOz+mOz=21(xOz+yOz)=90o.
1:
a: Hai cặp góc đối đỉnh là \(\widehat{xOy};\widehat{x'Oy'}\) và \(\widehat{xOy'};\widehat{x'Oy}\)
b: hai cặp góc bù nhau là:
\(\widehat{xOy};\widehat{xOy'}\)
\(\widehat{x'Oy};\widehat{x'Oy'}\)
góc kề bù có số đo 180độ
xoz cộng zox=yot
45 cộng zox=70
zox=70_45=24=25
1 \(x\cdot\left(x+2\right)=0\Rightarrow x=0\)
4. \(50\%\cdot x+\frac{2}{3}\cdot x=x+4\Rightarrow x=24\)
a) Các cặp góc kề bù
\(\widehat{xOy}\) và \(\widehat{yOx'}\)
\(\widehat{yOx'}\) và \(\widehat{x'Oy'}\)
\(\widehat{x'Oy'}\) và \(\widehat{xOy'}\)
\(\widehat{xOy'}\) và \(\widehat{xOy}\)
Các cặp góc đối:
\(\widehat{xOy}\) và \(\widehat{x'Oy'}\)
\(\widehat{x'Oy}\) và \(\widehat{y'Ox}\)
b) Do \(\widehat{xOy}\) kề bù với \(\widehat{xOy'}\)
\(\Rightarrow\widehat{xOy}+\widehat{xOy'}=180^o\)
\(\Rightarrow\widehat{xOy'}=180^o-70^o=110^o\)