K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 8 2018

Chọn đáp án B

31 tháng 3 2016

Kí hiệu \(N_{01}\)\(N_{02}\) là số hạt ban đầu lần lượt của \(^{235}U\) và \(^{238}U\).

t = 0 Ban đầu t thời điểm cần xác định hiện nay t 1 2

Hiện nay \(t_2\):   \(\frac{N_{1}}{N_{2}}=\frac{N_{01}2^{-\frac{t_2}{T_1}}}{N_{02}2^{-\frac{t_2}{T_2}}} =\frac{7}{1000}.(1)\)

Thời điểm \(t_1\)

                        \(\frac{N_1}{N_2}= \frac{N_{01}2^{-\frac{t_1}{T_1}}}{N_{02}2^{-\frac{t_1}{T_2}}} = \frac{3}{100}.(2)\)

Chia (1) cho (2) =>   \(\frac{2^{-\frac{t_2}{T_1}}.2^{-\frac{t_1}{T_2}}}{2^{-\frac{t_1}{T_1}}.2^{-\frac{t_2}{T_2}}}= \frac{7.100}{3.1000}= \frac{7}{30}.\)

Áp dụng \(\frac{1}{2^{-x}} =2^x. \)

               =>  \(2^{(t_2-t_1)(\frac{1}{T_2}-\frac{1}{T_1})} = \frac{7}{30}.\)

               => \(t_2-t_1 = \frac{T_1T_2}{T_1-T_2}\ln_2 (7/30)=1,74.10^{9}\).(năm) \(= 1,74 \)(tỉ năm).

Như vậy cách hiện nay 1,74 tỉ năm thì trong urani tự nhiên có tỉ lệ số hạt thỏa mãn như bài cho.

25 tháng 1 2019

Đáp án B

24 tháng 2 2018

23 tháng 11 2017

17 tháng 10 2018

Đáp án B

6 tháng 6 2021

lm ơn đó! mik cần câu trả lời gấp

14 tháng 6 2021

Đây là hóa 12 mà làm j phải hóa 9

18 tháng 5 2017

Tỉ lệ các khối lượng $\dfrac{m(U)}{m(Pb)} $ bằng tỉ số các nguyên tử $\dfrac{N(U)}{N(Pb)} $nhân với tỉ số các khối, do vậy:

$\dfrac{m(U)}{m(Pb)} =\frac{N(U)}{N(Pb)}.\dfrac{238}{206} =37$

$\dfrac{N(U)}{N(Pb)}=32 $, nghĩa là hiện nay cứ 32 nguyên tử urani thì có 1 nguyên tử chì, do 1 nguyên tử urani sinh ra. Vậy ban đầu có 33 nguyên tử urani.

Ta có $32=33.2^{-t/T}$. Suy ra $2^{-t/T}=0,97$.

Vậy $t=2.10^8$ năm.

18 tháng 5 2017

cho e hỏi tại sao lại có 1 nguyên tử Urani sinh ra ạ

31 tháng 3 2016

Cứ 1 hạt nhân \(_{92}^{238}U\) bị phân rã tạo ra 1 hạt nhân \(_{82}^{206}Pb\). Từ đó ta có nhận xét là số hạt nhân \(_{92}^{238}U\) bị phân rã chính bằng số hạt nhân \(_{82}^{206}Pb\) tạo thành.

Tỉ số giữa số hạt nhân \(_{92}^{238}U\) bị phân rã và số hạt nhân \(_{92}^{238}U\) còn lại là 

\(\frac{\Delta N}{N}= \frac{6,239.10^{18}}{1,188.10^{20}}= 0,0525 = \frac{1-2^{-\frac{t}{T}}}{2^{-\frac{t}{T}}}\)

Nhân chéo =>  \(2^{-\frac{t}{T}}= 0,95.\)

                  => \(t = -T\ln_2 0,95 = 3,3.10^8\)(năm)

=> Tuổi của khối đã là 3,3.108 năm.