K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 12 2020

\(x\left(y+1\right)+\left(y+1\right)=\left(x+1\right)\left(y+1\right)\)

\(x\left(y+1\right)+1\left(y+1\right)=VP\)

\(\left(y+1\right)\left(x+1\right)=VP\)hay \(VT=VP\)

Ta có đpcm 

AH
Akai Haruma
Giáo viên
10 tháng 8 2021

Lời giải:

Áp dụng BĐT Cô-si ta có:

\((1+\frac{1}{x})(1+\frac{1}{y})=\frac{x+1}{x}.\frac{y+1}{y}=\frac{(x+1)(y+1)}{xy}\)

\(=\frac{(x+x+y)(y+x+y)}{xy}\geq \frac{3.\sqrt[3]{x^2y}.3\sqrt[3]{xy^2}}{xy}=\frac{9xy}{xy}=9\) 

Vậy ta có đpcm

Dấu "=" xảy ra khi $x=y=\frac{1}{2}

AH
Akai Haruma
Giáo viên
10 tháng 8 2021

Cách 2:

\((1+\frac{1}{x})(1+\frac{1}{y})=1+\frac{1}{x}+\frac{1}{y}+\frac{1}{xy}=1+\frac{x+y}{xy}+\frac{1}{xy}\)

\(=1+\frac{2}{xy}\)

Áp dụng BĐT Cô-si:

$xy\leq \frac{(x+y)^2}{4}=\frac{1}{4}$

$\Rightarrow \frac{2}{xy}\geq 8$

$\Rightarrow (1+\frac{1}{x})(1+\frac{1}{y})\geq 1+8=9$

Ta có đpcm

Dấu "=" xảy ra khi $x=y=\frac{1}{2}$

 

AH
Akai Haruma
Giáo viên
12 tháng 8 2021

Lời giải:

Áp dụng BĐT Cô-si cho các số dương:
\((1+\frac{1}{x})(1+\frac{1}{y})=\frac{(x+1)(y+1)}{xy}=\frac{(x+x+y)(y+x+y)}{xy}\)

\(\geq \frac{3\sqrt[3]{x^2y}.3\sqrt[3]{xy^2}}{xy}=\frac{9xy}{xy}=9\)

Vậy ta có đpcm

Dấu "=" xảy ra khi $x=y=\frac{1}{2}$

NV
31 tháng 3 2023

Với a;b;c dương ta có:

\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)

\(\Leftrightarrow2a^2+2b^2+2c^2\ge2ab+2bc+2ca\)

\(\Leftrightarrow3a^2+3b^2+3c^2\ge a^2+b^2+c^2+2ab+2bc+2ca\)

\(\Leftrightarrow a^2+b^2+c^2\ge\dfrac{1}{3}\left(a+b+c\right)^2\)

Lại có:

\(\left(a+b+c\right)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\ge3\sqrt[3]{abc}.3\sqrt[3]{\dfrac{1}{abc}}=9\)

Áp dụng:

\(\left(x^2+y^2+z^2\right)\left(\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}\right)\ge\dfrac{1}{3}\left(x+y+z\right)^2.\dfrac{1}{3}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)^2\)

\(=\dfrac{1}{9}\left(x+y+z\right)\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)\left(x+y+z\right)\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)\)

\(=\dfrac{1}{9}.9.\left(x+y+z\right)\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)=\left(x+y+z\right)\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)\)

Dấu "=" xảy ra khi \(x=y=z\)

22 tháng 4 2020

\(x+y=1\Rightarrow\hept{\begin{cases}x=1-y\\y=1-x\end{cases}}\)

\(A=\frac{1-y}{\left(y-1\right)\left(y^2+y+1\right)}-\frac{1-x}{\left(x-1\right)\left(x^2+x+1\right)}+\frac{2\left(x-y\right)}{x^2y^2+3}\)

\(A=\frac{-1}{y^2+y+1}-\frac{-1}{x^2+x+1}+\frac{2\left(x-y\right)}{x^2y^2+3}\)

\(A=\frac{-x^2-x-1+y^2+y+1}{\left(y^2+y+1\right)\left(x^2+x+1\right)}+\frac{2\left(x-y\right)}{x^2y^2+3}\)

\(A=\frac{\left(y-x\right)\left(x+y\right)+\left(y-x\right)}{x^2y^2+y^2x+y^2+yx^2+xy+y+x^2+x+1}+\frac{2\left(x-y\right)}{x^2y^2+3}\)

\(A=\frac{\left(y-x\right)\left(x+y+1\right)}{x^2y^2+x^2+y^2+xy\left(x+y\right)+xy+\left(x+y\right)+1}+\frac{2\left(x-y\right)}{x^2y^2+3}\) mà x + y = 1

\(A=\frac{2\left(y-x\right)}{x^2y^2+x^2+y^2+2xy+2}+\frac{2\left(x-y\right)}{x^2y^2+3}\)

\(A=\frac{2\left(y-x\right)}{x^2y^2+\left(x+y\right)^2+2}+\frac{2\left(x-y\right)}{x^2y^2+3}\) ; x + y = 1

\(A=\frac{2\left(y-x\right)}{x^2y^2+3}+\frac{2\left(x-y\right)}{x^2y^2+3}=0\)

27 tháng 3 2018
De qua
27 tháng 3 2018

Ai giải bài này nhanh giúp mình với, mình đang cần gấp 

20 tháng 1 2017

\(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)

\(\Leftrightarrow\left(x+y\right)\left(\frac{1}{x}+\frac{1}{y}\right)\ge4\)

Áp dụng BĐT Cô - si

\(\Rightarrow\left\{\begin{matrix}x+y\ge2\sqrt{xy}\\\frac{1}{x}+\frac{1}{y}\ge2\sqrt{\frac{1}{xy}}\end{matrix}\right.\)

\(\Rightarrow\left(x+y\right)\left(\frac{1}{x}+\frac{1}{y}\right)\ge4\sqrt{xy.\frac{1}{xy}}\)

\(\Rightarrow\left(x+y\right)\left(\frac{1}{x}+\frac{1}{y}\right)\ge4\) ( đpcm )

\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{9}{x+y+z}\)

\(\Leftrightarrow\left(x+y+z\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge9\)

Áp dụng BĐT Cô - si

\(\Rightarrow\left\{\begin{matrix}x+y+z\ge3\sqrt{xyz}\\\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge3\sqrt{\frac{1}{xyz}}\end{matrix}\right.\)

\(\Rightarrow\left(x+y+z\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge9\sqrt{xyz.\frac{1}{xyz}}\)

\(\Rightarrow\left(x+y+z\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge9\) ( đpcm )

21 tháng 1 2017

cũng đúng nhưng mình chưa hoc BĐT Cô-si

NV
7 tháng 6 2020

Do x;y;z là các cạnh của 1 tam giác nên \(\left\{{}\begin{matrix}x+y-z>0\\y+z-x>0\\z+x-y>0\end{matrix}\right.\)

Ta có: \(\frac{1}{x+y-z}+\frac{1}{x+z-y}\ge\frac{4}{x+y-z+x+z-y}=\frac{2}{x}\)

Tương tự: \(\frac{1}{x+y-z}+\frac{1}{y+z-x}\ge\frac{2}{y}\) ; \(\frac{1}{y+z-x}+\frac{1}{x+z-y}\ge\frac{2}{z}\)

Cộng vế với vế:

\(2\left(\frac{1}{x+y-z}+\frac{1}{y+z-x}+\frac{1}{x+z-y}\right)\ge\frac{2}{x}+\frac{2}{y}+\frac{2}{z}\)

\(\Leftrightarrow\frac{1}{x+y-z}+\frac{1}{y+z-x}+\frac{1}{z+x-y}\ge\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\)

Dấu "=" xảy ra khi \(x=y=z\)

13 tháng 4

VMO 2007 bạn nhé