K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 11 2017

Do đó phương trình đường thẳng đi qua hai điểm cực trị là 

Đường thẳng AB đi qua gốc tọa độ

11 tháng 11 2016

a/ Gọi điểm cố định \(M\left(x_0;y_0\right)\)

Khi đó đường thẳng y = k(x+3)-7 đi qua M , tức \(k\left(x_0+3\right)-7-y_0=0\) 

Vì đường thẳng y = k(x+3)-7 luôn đi qua M nên \(\hept{\begin{cases}x_0+3=0\\-y_0-7=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x_0=-3\\y_0=-7\end{cases}}\)

Vậy đường thẳng đã cho luôn đi qua điểm M(-3;-7)

b/ Gọi điểm cố định là \(N\left(x_0;y_0\right)\)

Vì họ đường thẳng (m+2)x + (m-3)y -m+8 = 0 luôn đi qua N nên : 

\(\left(m+2\right).x_0+\left(m-3\right).y_0-m+8=0\)

\(\Leftrightarrow m\left(x_0+y_0-1\right)+\left(2x_0-3y_0+8\right)=0\)

Ta có \(\hept{\begin{cases}x_0+y_0-1=0\\2x_0-3y_0+8=0\end{cases}}\) \(\Leftrightarrow\hept{\begin{cases}x_0=-1\\y_0=2\end{cases}}\)

Vậy điểm cố định N(-1;2)

Câu còn lại bạn làm tương tự nhé ^^

12 tháng 11 2016

c/ Đơn giản thôi mà =)

Ta cũng gọi điểm cố định đó là \(M\left(x_0;y_0\right)\)

Vì họ đường thẳng y=(2-k)x+k-5 đi qua M nên : 

\(y_0=\left(2-k\right)x_0+k-5\Leftrightarrow k\left(1-x_0\right)+\left(2x_0-y_0-5\right)=0\)

Ta có \(\hept{\begin{cases}1-x_0=0\\2x_0-y_0-5=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x_0=1\\y_0=-3\end{cases}}\)

Vậy điểm cố định là M(1;-3)

AH
Akai Haruma
Giáo viên
21 tháng 9 2018

Lời giải:

a) Gọi $(x_0,y_0)$ là điểm cố định.

Khi đó \((m-1)x_0+(m-2)y_0=3, \forall m\)

\(\Leftrightarrow m(x_0+y_0)-(x_0+2y_0+3)=0\) với mọi $m$

\(\Rightarrow \left\{\begin{matrix} x_0+y_0=0\\ x_0+2y_0+3=0\end{matrix}\right.\Rightarrow \left\{\begin{matrix} x_0=3\\ y_0=-3\end{matrix}\right.\)

Vậy điểm cố định mà họ đường thẳng d đi qua là $(3;-3)$

b)

Công thức nâng cao. Cho điểm $A(x_0;y_0)$ và đường thẳng d:\(mx+ny+c=0\)

Khi đó khoảng cách giữa $A$ và $d$ là:

\(d=\frac{|mx_0+ny_0+c|}{\sqrt{m^2+n^2}}\)

Áp dụng vào bài toán:

\(d(A,d)=\frac{|(m-1).1+(m-2)(-2)-3|}{\sqrt{(m-1)^2+(m-2)^2}}=\frac{|-m|}{\sqrt{2m^2-6m+5}}\)

\(=\sqrt{\frac{m^2}{2m^2-6m+5}}=\frac{1}{\sqrt{2-\frac{6}{m}+\frac{5}{m^2}}}\)

\(=\frac{1}{\sqrt{(\frac{\sqrt{5}}{m}-\frac{3}{\sqrt{5}})^2+\frac{1}{5}}}\leq \frac{1}{\sqrt{0+\frac{1}{5}}}=\sqrt{5}\)

Vậy \(d_{\max}=\sqrt{5}\Leftrightarrow m=\frac{5}{3}\)

23 tháng 9 2021

\(a,d//d_1\Leftrightarrow\left\{{}\begin{matrix}m+2=-2\\m\ne3\end{matrix}\right.\Leftrightarrow m=-4\\ b,d\perp d_2\Leftrightarrow\dfrac{1}{3}\left(m+2\right)=-1\Leftrightarrow m+2=-3\Leftrightarrow m=-5\\ c,d.qua.N\left(1;3\right)\Leftrightarrow x=1;y=3\Leftrightarrow3=m+2+m\\ \Leftrightarrow2m=1\Leftrightarrow m=\dfrac{1}{2}\)

23 tháng 9 2021

k có câu d ạ

 

NV
30 tháng 1 2022

Phương trình \(\left(C_m\right)\) viết lại: 

\(y=\left(x-m+2\right)^3-3\left(x-m+2\right)\)

Họ đồ thị hàm \(\left(C_m\right)\) đơn giản là đồ thị hàm \(y=x^3-3x\) tịnh tiến song song với trục Ox, do đó họ đồ thị này luôn tiếp xúc với các tiếp tuyến tại cực trị của \(y=x^3-3x\) (là hai đường thẳng \(y=\pm2\))

Vậy họ đường cong \(\left(C_m\right)\) luôn tiếp xúc với 2 đường thẳng cố định \(y=\pm2\)

21 tháng 10 2020

Akai Haruma giúp em với ak

y=mx+2x-m+3=m(x-1)+2x+3

ĐIểm mà d luôn đi qua là:

x-1=0 và y=2x+3

=>x=1 và y=2+3=5

NV
19 tháng 11 2019

1/ Phương trình tọa độ giao điểm A của (d1) và (d2):

\(\left\{{}\begin{matrix}y=x-1\\y=2x-3\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\) \(\Rightarrow A\left(2;1\right)\)

Để 3 đường thẳng đồng quy \(\Rightarrow\) (d3) qua A

\(\Rightarrow2k+7=1\Rightarrow k=-3\)

2/ Gọi tọa độ điểm cố định là \(M\left(x_0;y_0\right)\)

\(\Rightarrow y_0=\left(m+4\right)x_0-m+6\) \(\forall m\)

\(\Rightarrow\left(x_0-1\right)m+4x_0-y_0+6=0\)

\(\Rightarrow\left\{{}\begin{matrix}x_0-1=0\\4x_0-y_0+6=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x_0=1\\y_0=10\end{matrix}\right.\) \(\Rightarrow M\left(1;10\right)\)

Để đường thẳng tạo với trục Ox 1 góc \(45^0\)

\(\Rightarrow m+4=tan45^0=1\Rightarrow m=-3\)