Trong khôn gian với hệ trục tọa độ , cho mặt cầu . Tìm tọa độ điểm A thuộc trục Oy, biết rằng ba mặt phẳng phân biệt qua A có các vec-tơ pháp tuyến lần lượt là các vec-tơ đơn vị của các trục tọa độ cắt mặt cầu theo thiết diện là ba hình tròn có tổng diện tích là
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Đáp án C
Tọa độ tâm và bán kính mặt cầu (S): I(-1;3;2) R = 3

Đáp án B
Mặt cầu (S) có tâm I(1;2;3) và bán kính R=3. Diện tích mặt cầu (S) là S=4π R²=36π.

Chọn A
Gọi là một vec tơ pháp tuyến của mặt phẳng (P).
Theo đề bài ta có mặt phẳng (P) vuông góc với mặt phẳng (α): x-y+z-4=0 nên ta có phương trình a-b+c=0 ó b=a+c
Phương trình mặt phẳng (P) đi qua A(0;1;2) và có véc tơ pháp tuyến là ax+ (a+c) (y-1)+c (z-2) =0
Khoảng cách từ tâm I (3;1;2) đến mặt phẳng (P) là
Gọi r là bán kính của đường tròn giao tuyến giữa mặt cầu (S) và mặt phẳng (P) ta có r²=16-h² ; r nhỏ nhất khi h lớn nhất.
Dấu “=” xảy ra khi a = -2c. => một véc tơ pháp tuyến là => phương trình mặt phẳng (P) là 2x+y-z+1=0.
Vậy tọa độ giao điểm M của (P) và trục x'Ox là:
Đáp án A.
Mặt cầu (S) có tâm O ( 0 ; 4 ; 0 ) và bán kính R = 5 .Điểm A ∈ O y → A ( 0 ; b ; 0 ) . Khi đó ba mặt phẳng theo giả thiết đi qua A và có phương trình tổng quát lần lượt là α 1 : x = 0 , α 2 : y - b = 0 và α 3 : z = 0 .
Nhận thấy d I ; α 1 = d I ; α 2 = d I ; α 3 = 0 nên mặt cầu (S) cắt các mặt phẳng α 1 , α 3 theo giao tuyến là đường tròn lớn có tâm I, bán kính R = 5 . Tổng diện tích của hai hình tròn đó là S 1 + S 3 = 2 πR 2 = 10 π .
Suy ra mặt cầu (S) cắt α 2 theo giao tuyến là một đường tròn có diện tích là S 3 = 11 π - S 1 + S 2 = 11 π - 10 π = π . Bán kính đường tròn này là r = S 3 π = 1 .
→ d I , α 3 = R 2 - r 2 = 2 = 4 - b ⇔ b = 2 b = 6 . Vậy A 0 ; 2 ; 0 A ( 0 ; 6 ; 0 ) .