ab,cd-abc,d=5609.Tim số : a,b,c,d
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ab x cb = ddd
b x b = d nên d chỉ có thể là 4; 6 hoặc 9, khi đó b sẽ là 2; 4; 3 hoặc 7
Vì hai thừa số là số có hai chữ số và tích có ba chữ số bằng nhau, nên chữ số hàng chục sẽ bé hơn hàng đơn vị.
Vì vậy ta chọn b = 7
Nếu b = 7 và d = 9 ta có: a7 x c7 = 999
( Ta thấy 7 x 7 = 49, viết 9 nhớ 4. Vậy chọn a là số mà khi nhân 7, cộng thêm 4 rồi cộng thêm ở c x 7 để có kết quả là 9 )
Thế vào phép tính suy ra ta có:
a = 2 và c = 3
27 x 37 = 999
Vậy abcd = 2739
ab x cd = ddd = d x 111 = d x 3 x 37, mà 37 là số nguyên tố
=> ab = 37 hoặc cd = 37
TH1: nếu cd = 37 thì:
ab x 37 = 777
=> ab = 21
TL: 21.37 = 777 (thỏa mãn)
TH2: nếu ab = 37 thì:
37 x cd = d x 3 x 37
=> cd = d x 3
Ta thấy : cd <= 27 (vì d <= 9 => cd <= 27)
mà c > 0 nên c = 1 hoặc c = 2
+) Nếu c = 1 => 10 + d = 3d
=> 10 = 2d
=> d = 5
TL: 37.15 = 555 (thỏa mãn)
+) Nếu c = 2 => 20 + d = 3d
=> 20 = 2d
=> d = 10 (loại vì d là chữ số)
ĐS: (a; b; c; d) ∈ {(3;7;1;5);(2;1;3;7)}
Nếu đề bài là: Cho số: \(\overline{abcd}\) biết \(2\overline{ab}=5\overline{cd}\)mà (5; 2 ) =1
=> \(\overline{ab}=5k\); \(\overline{cd}=2k\) là các số tự nhiên có hai chữ số.
Khi đó: \(10\le2k< 5k\le99\)
( Rát nhiều k thỏa mãn tốt nhất em nên kẻ bảng hơn là liệt kê)
+) k = 5 => \(\hept{\begin{cases}\overline{cd}=10\\\overline{ab}=25\end{cases}\Rightarrow\overline{abcd}=2510}\)
+) k = 6, 7, 8, 9, 10, 11, 12, 13, 14; 15; 16; 17 ; 18 tự làm
+) k =19 => \(\hept{\begin{cases}\overline{cd}=2.19=38\\\overline{ab}=5.19=95\end{cases}\Rightarrow\overline{abcd}=9538}\)
Nếu đề là: Cho a, b, c, d \(\inℕ^∗\), biết 2.ab =5.cd
Tìm a, b, c, d.
Có: \(\left(2;5\right)=1\)và 2.ab =5.cd
=> \(ab⋮5\) và \(cd⋮2\)
Nếu đặt : \(ab=5k\Rightarrow cd=2k\)và vì a, b, c, d \(\inℕ^∗\)=> k \(\inℕ^∗\),
Với mỗi k sẽ cho a,b, c, d và các hoán vị của nó
VD: k =1 => ab=5; cd=2 => a=1,b=5 hoặc a=5, b=1
c=2, d=1 hoặc c=1; d=2
k= 2 còn nhiều hơn ....
nên cô nghĩ đề vẫn thiếu.
Nếu em có lời giải của bạn này mong em đăng lên để cô và các bạn tham khảo:)
Kẻ BE // AD
Kẻ thêm BD => E=90
Ta dể dàng CM được tam giác ABD= tam giác EDB
=> DE=10 => EC=10
EB=10
=> EBC=ECB=45
=> ABC=135
Ta thấy nếu dịch chuyển dấu phẩy của số thập phân sang phải 1 hàng ta được 1 số mới gấp 10 lần số cũ
Ta có :
a,bcd + ab,cd + abc,d + abcd = 2229,777
a,bcd x 1 + a,bcd x 10 + a,bcd x 100 + a,bcd x 1000 = 2229,777
a,bcd x ( 1 + 10 + 100 + 1000 ) = 2229,777
a,bcd x 1111 = 2229,777
Vậy a,bcd = 2229,777 : 1111
a,bcd = 2,007
abcd là : 2,007 x 1000 = 2007
Đ/S:..........
abcd gấp 1000 lần a,bcd
abcd gấp 100 lần ab,cd
abcd gấp 10 lần abc,d
Suy ra:
abcd = 1000 phần
abc,d = 100 phần
ab,cd = 10 phần
a,bcd = 1 phần
Tổng số phần bằng nhau là:
1000 + 100 + 10 + 1 = 1111 (phần)
Số abcd là:
2229,777 : 1111 x 1000 = 2007
Đáp số:2007
Có: ab x cd = b x 111 = b x 3 x 37
=> ab; cd chia hết cho 37
=> ab ; cd có thể bằng 37 hoặc 74
+) Nếu ab = 37 => 37 x cd = 777 => cd = 21 (nhận)
+) Nếu ab = 74 => 74 x cd = 444 => cd = 6 (loại)
+) Nếu cd = 37 => ab x 37 = b x 111 => ab = b x 3
Vì b x 3 được số tận cùng là b => b = 5 => ab = 15
+) Nếu cd = 74 => ab x 74 = b x 111 => ab x 2 = b x 3
=> (10 x a + b) x 2 = b x 3 => a x 20 + b x 2 = b x 3
=> a x 20 = b. Không có a; b nào thoả mãn
Vậy ab = 15 ; cd = 27 hoặc
ab = 37; cd = 21
điều kiện a khác 0
a, b, c, d nguyên dương nằm trong khoảng từ 0-> 9
=> ab, cd nguyen dương
ab x cd =bbb
<=> ab x cd = 111x b
<=> cd = (111 x b)/ ab
<=> cd = (111 x b) /(10a+ b)
* với b khác 0
<=> cd= 111/( 10a/b + 1)
mà cd nguyên => 111 chia hết cho 10 a/b + 1
=> 10 a/b+ 1= 1 hoặc 10a/b +1= 111 hoac 10 a/b+ 1= 3 hoac 10 a/b+ 1= 37
**10 a/b +1 = 1 => a =0 ( loại)
** 10 a/b + 1 = 111 => a/b = 11 ( loại)
** 10 a/b+ 1= 3 => a/b = 1/5 => a=1, b=5
=> 10c + d= 37 <=> d = 37 -10 c >0
=> c= 3 <=> d = 7
=> số 1537
** 10 a/b+ 1= 37
=> a/b = 36/10 ( loại)
*** với b = 0
=> cd = 0
=> c= d= 0
vậy các sô cần tìm là
1000, 1573, 2000, 3000, 4000,5000, 6000, 7000, 8000, 9000
k mk nha ^^
Viên đạn bạc, cậu học cấp 2 rồi sao ko giải các bài cấp 2 đi sao lại vào trang tiểu học làm chi.