Cho lăng trụ tam giác đều ABC.A'B'C' có AB = a, AA' = a 2 . Tính diện tích S A ' B C của tam giác A'BC
A. S A ' B C = a 2 2
B. S A ' B C = a 2 3 2
C. S A ' B C = a 2 2 2
D. S A ' B C = a 2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
_ Thể tích khối lăng trụ :
Gọi D là trung điểm của BC ta có : \(BC\perp AD\Rightarrow BC\perp A'D\Rightarrow\widehat{ADA'}=60^0\)
Ta cso \(AA'=AD.\tan\widehat{ADA'}=\frac{3a}{2};S_{ABC}=\frac{a^2\sqrt{3}}{4}\)
Do đó \(V_{ABC.A'B'C'=}S_{ABC}.AA'=\frac{3a^2\sqrt{3}}{8}\)
- Bán kính mặt cầu ngoại tiếp tứ diện GABC :
Ta có I là giao điểm của GH với đường trung trực của AG trong mặt phẳng (AGH)
Gọi E là trung điểm của AG, ta có :
\(R=GI=\frac{GE.GA}{GH}=\frac{GA^2}{2GH}\)
Ta có :
\(GH=\frac{AA'}{3}=\frac{a}{2};AH=\frac{a\sqrt{3}}{3};GA^2=GH^2+AH^2=\frac{7a^2}{12}\)
Do đó \(R=\frac{7a^2}{2.12}.\frac{2}{a}=\frac{7a}{12}\)
Phương pháp:
Xác định góc 30 ° (góc tạo bởi hai mặt phẳng là góc giữa hai đường thẳng cùng vuông góc với giao tuyến).
Tính diện tích tam giác đáy và chiều cao lăng trụ rồi tính thể tích theo công thức V = B.h
Cách giải:
Ta có:
Chọn A.
Đáp án B
Gọi H là hình chiếu của A lên A’B. Khi đó
A H ⊥ A ' B C ⇒ d A ; A ' B C = A H
Ta có 1 A H 2 = 1 A A ' 2 + 1 A B 2 = 1 2 a 2 + 1 a 2 = 5 4 a 2 ⇒ A H = 2 a 5
⇒ d A ; A ' B C = 2 a 5
Đáp án A