Với giá trị nào của a thì ∫ 1 a ( 3 x 2 + 2 x + 1 ) d x = - 4
A. a = -1
B. a = 1
C. a = 2
D. a = 3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1: Đơn thức 1/2 xy^ 3 z ^2 có bậc là bao nhiêu?
A. 3 B. 4 C. 5 D. 6
Câu 2: Giá trị của đơn thức1/2 x^ 2 y tại x = 2 và y = 1 là:
A.1/2 B. 2 C. 1 D. 4
Câu 3: Nghiệm của đa thức P (x) = x 3 - 9x. là giá trị nào trong các giá trị sau?
A. 0 B. -3 C. 3 D. 0; -3; 3
Câu 4: Khi nhân hai đơn thức (-3/7xy 2 ).(-7x 2 y 2 ) được tích là:
A. -3x 2 y 4 B. 3x 3 y 4 C. -3x 3 y 4 D.-10/7x^ 3 y^ 4
Câu 5: Khi cộng ba đơn thức: 5xy 2 ; -7xy 2 ; 3xy 2 được tổng là:
A. x 3 y 6 B. xy 2 C. 15xy 2 D. - 9xy 2
Câu 6: . Đa thức P (x) = x 2 –x 3 + 2x 4 + 5 có hệ số cao nhất là:
A. 1 B. -1 C. 5 D. 2
\(A=\frac{4}{x+2}+\frac{2}{x-2}+\frac{6-5x}{x^2-4}\)
a) ĐKXĐ : x ≠ ±2
\(=\frac{4\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}+\frac{2\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}+\frac{6-5x}{\left(x-2\right)\left(x+2\right)}\)
\(=\frac{4x-8+2x+4+6-5x}{\left(x-2\right)\left(x+2\right)}=\frac{x+2}{\left(x-2\right)\left(x+2\right)}=\frac{1}{x-2}\)
b) Để A = 1 => \(\frac{1}{x-2}=1\)=> x - 2 = 1 => x = 3 ( tm )
c) Để A > 1 => \(\frac{1}{x-2}>1\)
=> \(\frac{1}{x-2}-1>0\)
=> \(\frac{1}{x-2}-\frac{x-2}{x-2}>0\)
=> \(\frac{1-x+2}{x-2}>0\)
=> \(\frac{-x+3}{x-2}>0\)
Xét hai trường hợp
1. \(\hept{\begin{cases}-x+3>0\\x-2>0\end{cases}}\Rightarrow\hept{\begin{cases}-x>-3\\x>2\end{cases}}\Rightarrow\hept{\begin{cases}x< 3\\x>2\end{cases}}\Rightarrow2< x< 3\)
2. \(\hept{\begin{cases}-x+3< 0\\x-2< 0\end{cases}}\Rightarrow\hept{\begin{cases}-x< -3\\x< 2\end{cases}}\Rightarrow\hept{\begin{cases}x>3\\x< 2\end{cases}}\)( loại )
Vậy với 2 < x < 3 thì A > 1
d) Để A nguyên => \(\frac{1}{x-2}\)nguyên
=> 1 ⋮ x - 2
=> x - 2 ∈ Ư(1) = { ±1 }
=> x ∈ { 1 ; 3 } thì A nguyên
a) \(ĐKXĐ:x\ne\pm2\)
\(A=\dfrac{4}{x+2}+\dfrac{2}{x-2}+\dfrac{6-5x}{x^2-4}\)
\(\Leftrightarrow A=\dfrac{4\left(x-2\right)+2\left(x+2\right)+6-5x}{\left(x-2\right)\left(x+2\right)}\)
\(\Leftrightarrow A=\dfrac{4x-8+2x+4+6-5x}{\left(x-2\right)\left(x+2\right)}\)
\(\Leftrightarrow A=\dfrac{x+2}{\left(x-2\right)\left(x+2\right)}\)
\(\Leftrightarrow A=\dfrac{1}{x-2}\)
b) Để A = 1
\(\Leftrightarrow\dfrac{1}{x-2}=1\)
\(\Leftrightarrow x-2=1\)
\(\Leftrightarrow x=3\) (tm)
Vậy ...
c) Để A > 1
\(\Leftrightarrow\dfrac{1}{x-2}>1\)
\(\Leftrightarrow\dfrac{1}{x-2}-1>0\)
\(\Leftrightarrow\dfrac{1-x+2}{x-2}>0\)
\(\Leftrightarrow\dfrac{-x+3}{x-2}>0\)
\(\Leftrightarrow\left(3-x\right)\left(x-2\right)>0\)
Trường hợp \(\left\{{}\begin{matrix}3-x>0\\x-2>0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x< 3\\x>2\end{matrix}\right.\)
\(\Leftrightarrow2< x< 3\) (tm)
Trường hợp \(\left\{{}\begin{matrix}3-x< 0\\x-2< 0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x>3\\x< 2\end{matrix}\right.\) (ktm)
Vậy ...
d) Để A nguyên
\(\Leftrightarrow\dfrac{1}{x-2}\in Z\)
\(\Leftrightarrow x-2\inƯ\left(1\right)=\left\{\pm1;\pm2\right\}\)
\(\Leftrightarrow x\in\left\{1;3;0;4\right\}\)
Vậy ...
Đáp án A