Tìm số nguyên dương n, biết: 3.27 > 3n ≥ 9
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
tìm số nguyên dương n, biết:
a) 25<5n<625
b)3.27>3nlớn hơn, bằng 9
c)16 bé hơn, bằng 8n bé hơn, bằng 64
a) \(25< 5^n< 625\)
\(25=5^2;625=5^4\)
=> \(5^2< 5^n< 5^4\)
=> 2 < n < 4
=> n = 3
b) \(9\le3^n< 3.27\)
\(9=3^2;3.27=3.3^3=3^4\)
=> \(3^2\le3^n< 3^4\)
=> n = 2; hoặc n = 3
c) \(16\le8^n\le64\)
\(16=8.2;64=8^2\)
=> \(8.2\le8^n\le8^2\)
=> n = 2
Lời giải:
Để $\frac{3n+9}{n-4}$ là số hữu tỉ dương thì có 2 TH xảy ra:
TH1:
\(\left\{\begin{matrix} 3n+9>0\\ n-4>0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} n>-3\\ n>4\end{matrix}\right.\Leftrightarrow n>4\)
TH2:
\(\left\{\begin{matrix} 3n+9< 0\\ n-4< 0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} n< -3\\ n< 4\end{matrix}\right.\Leftrightarrow n< -3\)
3n+14 chia hết chi n+1
=>3(n+1)+11 chia hết cho n+1
=>11 chia hết cho n+1
=>n+1 thuộc Ư(11)={1;11}
+)n+1=1=>n=0
+)n+1=11=>n=10
vậy....
a) Ta có: A = \(\frac{n+9}{n-4}=\frac{\left(n-4\right)+13}{n-4}=1+\frac{13}{n-4}\)
Để A \(\in\)Z <=> 13 \(\in\)n - 4 <=> n - 4 \(\in\)Ư(13) = {1; -1; 13; -13}
Với : +) n - 4 = 1 => n = 1 + 4 = 5
+) n - 4 = -1 => n = -1 + 4 = 3
+) n - 4 = 13 => n = 13 + 4 = 17
+) n - 4 = -13 => n= -13 + 4 = -9
Vậy ...
b) Ta có: B = \(\frac{3n+5}{n-1}=\frac{3\left(n-1\right)+8}{n-1}=3+\frac{8}{n-1}\)
Để B \(\in\)Z <=> 8 \(⋮\)n - 1 <=> n - 1 \(\in\)Ư(8) = {1; -1; 2; -2; 4; -4; 8; -8}
Lập bảng :
n - 1 | 1 | -1 | 2 | -2 | 4 | -4 | 8 | -8 |
n | 2 | 0 | 3 | -1 | 5 | -3 | 9 | -7 |
Vậy ...
Từ đề bài suy ra 34 > 3n ≥ 32, tìm được n ∈ {2; 3}