K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 6 2019

6 tháng 5 2018

Chọn B

HQ
Hà Quang Minh
Giáo viên
22 tháng 9 2023

\({y_0} = \sqrt 4  = 2\)

Ta có: \({\left( {\sqrt x } \right)^\prime } = \frac{1}{{2\sqrt x }}\) nên tiếp tuyến của \(\left( C \right)\) tại điểm \(M\left( {4;2} \right)\) có hệ số góc là: \(f'\left( 4 \right) = \frac{1}{{2\sqrt 4 }} = \frac{1}{4}\)

Phương trình tiếp tuyến của \(\left( C \right)\) tại điểm \(M\) là:

\(y - 2 = \frac{1}{4}\left( {x - 4} \right) \Leftrightarrow y = \frac{1}{4}x - 1 + 2 \Leftrightarrow y = \frac{1}{4}x + 1\).

9 tháng 8 2019

10 tháng 7 2017
QT
Quoc Tran Anh Le
Giáo viên
22 tháng 9 2023

a)     \(y' = \left( {{x^3} - 3{x^2} + 4} \right)' = 3{x^2} - 6x\), \(y'\left( 2 \right) = {3.2^2} - 6.2 = 0\)

Thay \({x_0} = 2\) vào phương trình \(y = {x^3} - 3{x^2} + 4\) ta được: \(y = {2^3} - {3.2^2} + 4 = 0\)

Ta có phương trình tiếp tuyến của đồ thị hàm số: \(y = 0.(x - 2) + 0 = 0\)

Vậy phương trình tiếp tuyến của đồ thị hàm số là y = 0

b)    \(y' = \left( {\ln x} \right)' = \frac{1}{x}\), \(y'(e) = \frac{1}{e}\)

Thay \({x_0} = e\) vào phương trình \(y = \ln x\) ta được: \(y = \ln e = 1\)

Ta có phương trình tiếp tuyến của đồ thị hàm số: \(y = \frac{1}{e}.\left( {x - e} \right) + 1 = \frac{1}{e}x - 1 + 1 = \frac{1}{e}x\)

Vậy phương trình tiếp tuyến của đồ thị hàm số là: \(y = \frac{1}{e}x\)

c)     \(y' = \left( {{e^x}} \right)' = {e^x},\,\,y'(0) = {e^0} = 1\)

Thay \({x_0} = 0\) vào phương trình \(y = {e^x}\) ta được: \(y = {e^0} = 1\)

Ta có phương trình tiếp tuyến của đồ thị hàm số: \(y = 1.\left( {x - 0} \right) + 1 = x + 1\)

Vậy phương trình tiếp tuyến của đồ thị hàm số là: \(y = x + 1\)

27 tháng 9 2018

+ Ta có y '   =   f ' ( x ) = a d   -   b c ( c x   +   d ) 2  . Từ đồ thị hàm số y= f’(x)  ta thấy:

Đồ thị hàm số y= f’(x)  có tiệm cận đứng x=1 nên –d/c= 1 hay  c= -d

Đồ thị hàm số y= f’(x )  đi qua điểm (2;2)

⇒ a d   -   b c ( 2 c   +   d ) 2   =   2   ↔ a d   -   b c   =   2   ( 2 c + d ) 2

Đồ thị hàm số y= f’(x)  đi qua điểm (0;2)

⇒ a d   -   b c d 2   =   2   ↔ a d   -   b c   =   2 d 2

Đồ thị hàm số y=f(x)  đi qua điểm (0;3) nên b/d= 3 hay b= 3d

Giải hệ  gồm 4 pt này ta được a=c= -d và b= 3d  .

 Ta chọn a=c= 1 ; b= -3 ; d= -1  

⇒ y   =   x   -   3 x   - 1  

Chọn  D.

25 tháng 1 2017

NV
7 tháng 1 2021

Thay \(x=1\Rightarrow2f\left(2\right)+3f\left(2\right)=10\Rightarrow f\left(2\right)=5\)

Đạo hàm 2 vế giả thiết:

\(-6f'\left(5-3x\right)+3f'\left(x+1\right)=2x+4\)

Thay \(x=1\)

\(-6f'\left(2\right)+3f'\left(2\right)=6\Rightarrow f'\left(2\right)=-2\)

Phương trình tiếp tuyến:

\(y=-2\left(x-2\right)+5=-2x+9\)

f'(x)=y'=-3x^2+2x

f'(2)=-3*2^2+2*2=-3*4+4=-8

f(2)=-2^3+2^2-1=-8-1+4=-9+4=-5

y=f(2)+f'(2)(x-2)

=-5+(-8)(x-2)

=-8x+16-5

=-8x+11