Khảo sát sự biến thiên và vẽ đồ thị của các hàm số: y = x 4 3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Do đó, hàm số đã cho nghịch biến trên tập xác định.
+ Giới hạn:
⇒ x = 0 (trục Oy) là tiệm cận đứng của đồ thị hàm số
y = 0 (trục Ox) là tiệm cận ngang của đồ thị hàm số.
+ Bảng biến thiên:
- Đồ thị:
Tập xác định: R\{0}
Hàm số đã cho là hàm số lẻ.
Ta có: y′ < 0, ∀ x ∈ R \ {0} nên hàm số luôn nghịch biến trên các khoảng xác định.
Đồ thị có tiệm cận ngang là trục hoành, tiệm cận đứng là trục tung.
Bảng biến thiên:
Đồ thị của hàm số có tâm đối xứng là gốc tọa độ.
Tập xác định: D = (0; + ∞ )
Vì y' < 0 ∀ x ∈ D nên hàm số nghịch biến.
Đồ thị có tiệm cận đứng là trục tung, tiệm cận ngang là trục hoành.
Bảng biến thiên:
Tập xác định: D = (0; + ∞ )
y′ > 0, ∀ x ∈ D
Vì y′ > 0, ∀ x ∈ D nên hàm số nghịch biến.
Đồ thị không có tiệm cận.
Bảng biến thiên
Đồ thị
y = - x + 2 x + 2
+) Tập xác định: D = R\{-2}
+) Ta có:
Bảng biến thiên:
Hàm số nghịch biến trên các khoảng (− ∞ ; −2), (−2; + ∞ )
+) Tiệm cận đứng x = -2 vì
Tiệm cận ngang y = -1 vì
Giao với các trục tọa độ: (0; 1); (2; 0)
Đồ thị
Khảo sát hàm số
- TXĐ: D = R \ {-1}
- Sự biến thiên:
+ Chiều biến thiên:
⇒ Hàm số nghịch biến trên các khoảng (-∞; -1) và (-1; +∞).
+ Cực trị: Hàm số không có cực trị.
+ Tiệm cận:
⇒ x = -1 là tiệm cận đứng của đồ thị hàm số.
⇒ y = 3 là tiệm cận đứng của đồ thị hàm số.
+ Bảng biến thiên:
- Đồ thị:
+ Giao với Ox: (-3; 0)
+ Giao với Oy: (0; 3)
+ Đồ thị hàm số nhận (-1; 1) là tâm đối xứng.
Với a = 0 ta có hàm số
- Tập xác định : D = R.
- Sự biến thiên :
y’ = -x2 – 2x + 3 ;
y’ = 0 ⇔ x = -3 hoặc x = 1.
QUẢNG CÁOBảng biến thiên :
Kết luận :
Hàm số đồng biến trên (-3 ; 1)
Hàm số nghịch biến trên (-∞; -3) và (1; +∞).
Hàm số đạt cực đại tại x = 1 ;
Hàm số đạt cực tiểu tại x = -3 ; yCT = -13.
- Đồ thị hàm số :
Hàm số
- Tập xác định: D = R\{2}
- Sự biến thiên:
⇒ Hàm số đồng biến trên (-∞; 2) và (2; +∞).
+ Cực trị : Hàm số không có cực trị
+ Tiệm cận:
⇒ y = 0 (trục Ox) là tiệm cận ngang của đồ thị hàm số.
⇒ x = 2 là tiệm cận đứng của đồ thị hàm số.
+ Bảng biến thiên:
- Đồ thị:
Xét hàm số ta có:
- Tập khảo sát : (0 ; +∞).
- Sự biến thiên:
+ với ∀ x > 0.
Do đó, hàm số đã cho đồng biến trên tập xác định.
+ Giới hạn:
+ Tiệm cận : Đồ thị hàm số không có tiệm cận.
+ Bảng biến thiên:
- Đồ thị hàm số: