K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 7 2018

Hàm số Giải bài 7 trang 146 sgk Giải tích 12 | Để học tốt Toán 12

- Tập xác định: D = R\{2}

- Sự biến thiên:

Giải bài 7 trang 146 sgk Giải tích 12 | Để học tốt Toán 12

⇒ Hàm số đồng biến trên (-∞; 2) và (2; +∞).

+ Cực trị : Hàm số không có cực trị

+ Tiệm cận: Giải bài 7 trang 146 sgk Giải tích 12 | Để học tốt Toán 12

⇒ y = 0 (trục Ox) là tiệm cận ngang của đồ thị hàm số.

Giải bài 7 trang 146 sgk Giải tích 12 | Để học tốt Toán 12

⇒ x = 2 là tiệm cận đứng của đồ thị hàm số.

+ Bảng biến thiên:

Giải bài 7 trang 146 sgk Giải tích 12 | Để học tốt Toán 12

- Đồ thị:

Giải bài 7 trang 146 sgk Giải tích 12 | Để học tốt Toán 12

17 tháng 1 2017

Với Giải bài 5 trang 146 sgk Giải tích 12 | Để học tốt Toán 12 ; b = 1 thì hàm số trở thành: Giải bài 5 trang 146 sgk Giải tích 12 | Để học tốt Toán 12

- TXĐ: D = R.

- Sự biến thiên:

Giải bài 5 trang 146 sgk Giải tích 12 | Để học tốt Toán 12

+ Giới hạn:

Giải bài 5 trang 146 sgk Giải tích 12 | Để học tốt Toán 12

+Bảng biến thiên:

Giải bài 5 trang 146 sgk Giải tích 12 | Để học tốt Toán 12

Kết luận: Hàm số đồng biến trên Giải bài 5 trang 146 sgk Giải tích 12 | Để học tốt Toán 12

Hàm số nghịch biến trên Giải bài 5 trang 146 sgk Giải tích 12 | Để học tốt Toán 12

Hàm số đạt cực đại tại x = 0; y = 1

Hàm số đạt cực tiểu tại Giải bài 5 trang 146 sgk Giải tích 12 | Để học tốt Toán 12

- Đồ thị:

Giải bài 5 trang 146 sgk Giải tích 12 | Để học tốt Toán 12

5 tháng 3 2018

Với m = 2 ta có hàm số Giải bài 6 trang 146 sgk Giải tích 12 | Để học tốt Toán 12

- Tập xác định : D = R\{-1}.

- Sự biến thiên :

Giải bài 6 trang 146 sgk Giải tích 12 | Để học tốt Toán 12

⇒ Hàm số đồng biến trên (-∞ ; -1) và (-1 ; +∞).

+ Cực trị : hàm số không có cực trị

+ Tiệm cận :

Giải bài 6 trang 146 sgk Giải tích 12 | Để học tốt Toán 12

⇒ y = 1 là tiệm cận ngang của đồ thị hàm số

Giải bài 6 trang 146 sgk Giải tích 12 | Để học tốt Toán 12

⇒ x = -1 là tiệm cận ngang của đồ thị hàm số.

+ Bảng biến thiên :

Giải bài 6 trang 146 sgk Giải tích 12 | Để học tốt Toán 12

- Đồ thị :

Giải bài 6 trang 146 sgk Giải tích 12 | Để học tốt Toán 12

11 tháng 10 2018

TXĐ: D = R

Sự biến thiên:

y′ = 3 x 2  – 6x = 3x(x – 2)

y′=0 ⇔ Giải sách bài tập Toán 12 | Giải sbt Toán 12

Hàm số đồng biến trên mỗi khoảng (– ∞ ;0), (2;+ ∞ )

Hàm số nghịch biến trên khoảng (0; 2).

Hàm số đạt cực đại tại x = 0 ; y CĐ  = y(0) = 0

Hàm số đạt cực tiểu tại x = 2;  y CT  = y(2) = -4.

Giới hạn: Giải sách bài tập Toán 12 | Giải sbt Toán 12

Điểm uốn: y” = 6x – 6, y” = 0 ⇔ x = 1; y(1) = –2

Suy ra đồ thị có điểm uốn I(1; -2)

Bảng biến thiên:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Đồ thị:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Đồ thị cắt trục hoành tại O(0;0), A(3;0). Đồ thị đi qua điểm B(-1;-4); C(2;-4).

10 tháng 10 2017

Tập xác định: D = R;

Giải sách bài tập Toán 12 | Giải sbt Toán 12

y′= 0 ⇔ Giải sách bài tập Toán 12 | Giải sbt Toán 12

Hàm số đồng biến trên mỗi khoảng (– ∞ ; 0), (4; + ∞ ).

Hàm số nghịch biến trên mỗi khoảng (0; 4).

Hàm số đạt cực đại tại x = 0, y CĐ  = 5. Hàm số đạt cực tiểu tại x = 4,  y CT  = -3.

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Đồ thị đi qua A(-2; -3); B(6;5).

Giải sách bài tập Toán 12 | Giải sbt Toán 12

16 tháng 5 2019

a) Học sinh tự làm

b) Ta có: y′ = –4 x 3  – 2x

Vì tiếp tuyến vuông góc với đường thẳng y = x/6 – 1 nên tiếp tuyến có hệ số góc là –6. Vì vậy:

–4 x 3  – 2x = –6

⇔ 2 x 3  + x – 3 = 0

⇔ 2( x 3  – 1) + (x – 1) = 0

⇔ (x – 1)(2 x 2  + 2x + 3) = 0

⇔ x = 1(2 x 2  + 2x + 3 > 0, ∀x)

Ta có: y(1) = 4

Phương trình phải tìm là: y – 4 = -6(x – 1) ⇔ y = -6x + 10

4 tháng 2 2019

y = - x + 2 x + 2

    +) Tập xác định: D = R\{-2}

    +) Ta có: Giải sách bài tập Toán 12 | Giải sbt Toán 12

Bảng biến thiên:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Hàm số nghịch biến trên các khoảng (− ∞ ; −2), (−2; + ∞ )

    +) Tiệm cận đứng x = -2 vì

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Tiệm cận ngang y = -1 vì

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Giao với các trục tọa độ: (0; 1); (2; 0)

Đồ thị

Giải sách bài tập Toán 12 | Giải sbt Toán 12

8 tháng 12 2018

Với m = 2 ta được hàm số:  y = 2 x - 1 2 x + 2

- TXĐ: D = R \ {-1}

- Sự biến thiên:

+ Chiều biến thiên: Theo kết quả câu a)

Hàm số đồng biến trên (-∞ ; -1) và (-1 ; +∞)

+ Cực trị : Hàm số không có cực trị.

+ Tiệm cận:

Giải bài 6 trang 44 sgk Giải tích 12 | Để học tốt Toán 12

⇒ đồ thị có tiệm cận đứng là x = -1.

Lại có

Giải bài 6 trang 44 sgk Giải tích 12 | Để học tốt Toán 12

⇒ đồ thị có tiệm cận ngang là y = 1.

+ Bảng biến thiên:

Giải bài 6 trang 44 sgk Giải tích 12 | Để học tốt Toán 12

- Đồ thị:

+ Đồ thị cắt trục hoành tại (1/2 ; 0).

+ Đồ thị cắt trục tung tại (0 ; -1/2).

+ Đồ thị nhận I(-1 ; 1) là tâm đối xứng.

Giải bài 6 trang 44 sgk Giải tích 12 | Để học tốt Toán 12

23 tháng 5 2019

Tập xác định: D = R

y′=0 ⇔ Giải sách bài tập Toán 12 | Giải sbt Toán 12

Hàm số đồng biến trên mỗi khoảng (-1; 0) và (1; + ∞ )

Hàm số nghịch biến trên mỗi khoảng (− ∞ ; −1); (0; 1)

Hàm số đạt cực đại tại x = 0; y CĐ  = 0

Hàm số đạt cực tiểu tại x = 1 hoặc x = -1;  y CT  = −2

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Đồ thị có hai điểm uốn:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Bảng biến thiên:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Đồ thị:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Đồ thị cắt trục hoành tại

26 tháng 12 2018

Với m = 2, ta có: Giải sách bài tập Toán 12 | Giải sbt Toán 12

Đồ thị:

Giải sách bài tập Toán 12 | Giải sbt Toán 12