- giải phương trình \(2\sqrt{x+4}-4\sqrt{2x-6}=x-7\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, ĐK: \(x\le-1,x\ge3\)
\(pt\Leftrightarrow2\left(x^2-2x-3\right)+\sqrt{x^2-2x-3}-3=0\)
\(\Leftrightarrow\left(2\sqrt{x^2-2x-3}+3\right).\left(\sqrt{x^2-2x-3}-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x^2-2x-3}=-\dfrac{3}{2}\left(l\right)\\\sqrt{x^2-2x-3}=1\end{matrix}\right.\)
\(\Leftrightarrow x^2-2x-3=1\)
\(\Leftrightarrow x^2-2x-4=0\)
\(\Leftrightarrow x=1\pm\sqrt{5}\left(tm\right)\)
b, ĐK: \(-2\le x\le2\)
Đặt \(\sqrt{2+x}-2\sqrt{2-x}=t\Rightarrow t^2=10-3x-4\sqrt{4-x^2}\)
Khi đó phương trình tương đương:
\(3t-t^2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}t=0\\t=3\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{2+x}-2\sqrt{2-x}=0\\\sqrt{2+x}-2\sqrt{2-x}=3\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}2+x=8-4x\\2+x=17-4x+12\sqrt{2-x}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{6}{5}\left(tm\right)\\5x-15=12\sqrt{2-x}\left(1\right)\end{matrix}\right.\)
Vì \(-2\le x\le2\Rightarrow5x-15< 0\Rightarrow\left(1\right)\) vô nghiệm
Vậy phương trình đã cho có nghiệm \(x=\dfrac{6}{5}\)
1) \(\sqrt[]{3x+7}-5< 0\)
\(\Leftrightarrow\sqrt[]{3x+7}< 5\)
\(\Leftrightarrow3x+7\ge0\cap3x+7< 25\)
\(\Leftrightarrow x\ge-\dfrac{7}{3}\cap x< 6\)
\(\Leftrightarrow-\dfrac{7}{3}\le x< 6\)
Ui...... người ta nói nó dễ ..................................
\(2\sqrt{x+4}-4\sqrt{2x-6}=x-7\)
\(\Leftrightarrow\sqrt{2^2\left(x+4\right)}-\sqrt{4^2\left(2x-6\right)}=x-7\)
\(\Leftrightarrow\sqrt{4x+16}-\sqrt{32x-96}=x-7\)
\(\Leftrightarrow\left(\sqrt{4x+16}-\sqrt{32x-96}\right)^2=\left(x-7\right)^2\)
\(\Leftrightarrow\sqrt{4x+16}^2-2.\sqrt{4x+16}.\sqrt{32x-96}+\sqrt{32x-96}^2=x^2-14x+49\)
\(\Leftrightarrow\left(4x+16\right)-2.\sqrt{\left(4x+16\right)\left(32x-96\right)}+\left(32x-96\right)=x^2-14x+49\)
\(\Leftrightarrow\left(4x+16\right)-2.\sqrt{128x^2-384x+512x-1536}+\left(32x-96\right)=x^2-14x+49\)
\(\Leftrightarrow\left(-2\sqrt{128x^2-384x+512x-1536}\right)=\left[x^2-14x+49-\left(4x+16\right)-\left(32x-96\right)\right]\)
\(\Leftrightarrow\left(-2\sqrt{128x^2+128x-1536}\right)^2=\left(x^2-50x+129\right)^2\)
\(\Leftrightarrow4.\left(128x^2+128x-1536\right)=\left(x^2-50x\right)^2+2.\left(x^2-50x\right).129+129^2\)
\(\Leftrightarrow512x^2+512x-6144=\left(x^2-50x\right)^2+258.\left(x^2-50x\right)+16641\)
\(\Leftrightarrow512x^2+512x-6144=x^4-100x^3+2500x^2+258x^2-12900x+16641\)
\(\Leftrightarrow-x^4+100x^3-2246x^2+13412x-22785=0\)
\(\Leftrightarrow x_1\approx70,94\) ; \(x_2\approx3,0588\) ; \(x_3=21\) ; \(x_4=5\)
Bài này có 1 nghiệm duy nhất thôi nha : x = 5
tại máy tính của mình ra sai kết quả
ĐKXĐ: $x \geq 2$
\(\Leftrightarrow2\left(x-4\right).\sqrt{x-2}-2\left(x-4\right)+\left(x-2\right)\sqrt{x+1}-2\left(x-2\right)+6x-18=0\\ \Leftrightarrow2.\left(x-4\right).\dfrac{x-3}{\sqrt{x-2}+1}+\left(x-2\right).\dfrac{x-3}{\sqrt{x+1}+2}+6.\left(x-3\right)=0\\ \Leftrightarrow\left(x-3\right)\left(\dfrac{2.\left(x-4\right)}{\sqrt{x-2}+1}+\dfrac{x-2}{\sqrt{x+1}+2}+6=0\right)\\ \Leftrightarrow x=3\)
Vì \(\dfrac{2.\left(x-4\right)}{\sqrt{x-2}+1}+\dfrac{x-2}{\sqrt{x+1}+2}+6=\dfrac{2\left(x-4\right)+4.\sqrt{x-2}+4}{\sqrt{x-2}+1}+\dfrac{x-2}{\sqrt{x+1}+2}+2\\ =\dfrac{2\left(x-2\right)+4.\sqrt{x-2}}{\sqrt{x-2}+1}+\dfrac{x-2}{\sqrt{x+1}+2}+2>0\)
Vậy....
\(\Leftrightarrow2\left(\sqrt{x+4}-3\right)-4\left(\sqrt{2x-6}-2\right)-x+5=0\)
\(\Leftrightarrow2.\frac{x+4-9}{\sqrt{x+4}+3}-4.\frac{2x-6-4}{\sqrt{2x-6}+2}-x+5=0\)
\(\Leftrightarrow\left(x-5\right)\left(\frac{2}{\sqrt{x+4}+3}-\frac{8}{\sqrt{2x-6}+2}-1\right)=0\)
Có: \(x\ge3\left(ĐK\right)\Rightarrow2<\sqrt{x+4}+3\Rightarrow\frac{2}{\sqrt{x+4}+3}-1<0\)
\(\Rightarrow\frac{2}{\sqrt{x+4}+3}-\frac{8}{\sqrt{2x-6}+2}-1<0\)
Vậy pt có nghiệm là x=5
x=5
tí nữa mình làm chi tiết cho