K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 1 2017

NV
22 tháng 4 2021

\(\Delta=m^2+12>0\) ; \(\forall m\)

\(\Rightarrow\) Khi \(n=0\) thì pt có nghiệm với mọi m

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=-m\\x_1x_2=n-3\end{matrix}\right.\)

Ta có: \(\left\{{}\begin{matrix}x_1-x_2=1\\x_1^2-x_2^2=7\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x_1-x_2=1\\\left(x_1+x_2\right)\left(x_1-x_2\right)=7\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_1-x_2=1\\x_1+x_2=7\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x_1=4\\x_2=3\end{matrix}\right.\)

Thế vào hệ thức Viet: \(\left\{{}\begin{matrix}4+3=-m\\4.3=n-3\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m=-7\\n=15\end{matrix}\right.\)

NV
2 tháng 7 2021

Giả sử pt có 2 nghiệm, theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2m-n\\x_1x_2=2m+3n-1\end{matrix}\right.\)

\(\left\{{}\begin{matrix}x_1+x_2=-1\\x_1^2+x_2^2=13\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x_1+x_2=-1\\\left(x_1+x_2\right)^2-2x_1x_2=13\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_1+x_2=-1\\x_1x_2=-6\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2m-n=-1\\2m+3n-1=-6\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}n=-1\\m=-1\end{matrix}\right.\)

1: \(\text{Δ}=\left(-1\right)^2-4\cdot1\cdot\left(-m+1\right)\)

=1+4m-4

=4m-3

Để phương trình có nghiệm kép thì 4m-3=0

hay m=3/4

Thay m=3/4 vào pt, ta được: \(x^2-x+\dfrac{1}{4}=0\)

hay x=1/2

2: Để phương trình có hai nghiệm thì 4m-3>=0

hay m>=3/4

Theo đề, ta có hệ phương trình:

\(\left\{{}\begin{matrix}2x_1+x_2=5\\x_1+x_2=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_1=4\\x_2=-3\end{matrix}\right.\)

Theo đề, ta có: \(x_1x_2=-m+1\)

=>1-m=-12

hay m=13

12 tháng 4 2023

a) \(x^2-mx+2m-4=0\) nhận \(x=3\) là nghiệm nên:

\(3^2-m.3+2m-4=0\)

\(\Leftrightarrow9-3m+2m-4=0\)

\(\Leftrightarrow m-5=0\)

\(\Leftrightarrow m=5\)

Vậy phương trình trở thành: \(x^2-5x+6=0\) nhận x=3 là nghiệm vậy nghiệm còn lại là:

\(\Delta=\left(-5\right)^2-4.1.6=1\)

\(\Rightarrow\left\{{}\begin{matrix}x_1=\dfrac{-b+\sqrt{\Delta}}{2a}=\dfrac{-\left(-5\right)+\sqrt{1}}{2.1}=3\\x_2=\dfrac{-b-\sqrt{\Delta}}{2a}=\dfrac{-\left(-5\right)-\sqrt{1}}{2.1}=2\end{matrix}\right.\)

Vậy nghiệm còn lại là \(x=2\)

17 tháng 12 2021

a: Thay m=-3 vào (1), ta được:

\(x^2-2x-3=0\)

=>(x-3)(x+1)=0

hay x∈{3;-1}

20 tháng 5 2023

1) \(\Delta'=1-m>0\forall m< 1\)

Vậy phương trình đã cho luôn có hai nghiệm phân biệt

2) Do a = 1; c = -1 nên a và c trái dấu

Do đó phương trình luôn có hai nghiệm phân biệt

Theo Viét, ta có:

\(\left\{{}\begin{matrix}x_1+x_2=-2\\x_1x_2=-1\end{matrix}\right.\)

\(\Rightarrow P=\dfrac{1}{x_1}+\dfrac{1}{x_2}=\dfrac{x_2+x_1}{x_1x_2}=\dfrac{-2}{-1}=2\)