cho tam giác đều ABC .Trên tia đối của tia AB lấy điểm D ,trên tia đối của tia BC lấy điểm E ,trên tia đối của tia CA lấy điểm F sao cho AD=BE=CF.Chứng minh tâm giác DÈ đều
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét \(\Delta EBD\)và \(\Delta FCE\)có:
EC = DB (Vì \(\hept{\begin{cases}AB=BC\\AD=EB\end{cases}}\))
\(\widehat{EBD}=\widehat{FCE}\)(Cùng là 2 góc ngoài của 1 tam giác đều)
EB = FC (gt)
Suy ra \(\Delta EBD\)\(=\Delta FCE\left(c-g-c\right)\)
\(\Rightarrow DE=EF\)(1)
Chứng minh tương tự: \(\Delta EBD\)\(=\Delta DAF\left(c-g-c\right)\)
\(\Rightarrow DE=FD\)(2)
Từ (1) và (2) suy ra DE = EF = FD
Vậy tam giác DEF đều (đpcm)
a: Xét ΔABC có \(\widehat{B}=\widehat{C}\)
nên ΔABC cân tại A
Ta có: ΔABC cân tại A
mà AD là đường phân giác
nên AD là đường cao
b: Xét ΔAEB và ΔAFC có
EB=FC
\(\widehat{ABE}=\widehat{ACF}\)
AB=AC
Do đó: ΔAEB=ΔAFC
Suy ra: AE=AF
Có: Góc BAE + BAD = góc BCF + BCA (=180 độ)
Góc BAD = BCA
⇒ góc BAE = FCB
Xét △BAE và △FCB có:
AB = CF
BAE = FCB
AE = CB
⇒△BAE = △FCB (c.g.c)
⇒EBA = CFB
Mà góc CFB + ABF = 90 độ ⇒EBA + ABF = 90 độ
⇒ góc EBF = 90 độ ⇒BE vuông góc với BF