Biết F(x) là nguyên hàm của hàm số . Hỏi đồ thị của hàm số y = F(x) có bao nhiêu điểm cực trị?
A. 1
B. vô số điểm
C. 2
D. 0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt h( x) = 2f( x) – ( x-1) 2
Suy ra đạo hàm: h’( x) = 2f’(x) -2( x-1).
Ta vẽ thêm đường thẳng y= x-1.
Ta có h’ (x) =0 khi f’(x) =x-1
Suy ra x=0; x=1; x=2; x=3
Theo đồ thị h’(x) > .0 khi f’(x) > x-1
Ta có :
Đồ thị hàm số g( x) có nhiều điểm cực trị nhất khi h( x) có nhiều giao điểm với trục hoành nhất.
Vậy đồ thị hàm số h( x) cắt trục hoành tại nhiều nhất 4 điểm, suy ra đồ thị hàm số g(x) có tối đa 7 điểm cực trị.
Chọn B.
Chọn B
+ Với x= - 1: ta có : f’ (-1) = 0
Giá trị của hàm số y= f’(x) đổi dấu từ âm sang dương khi qua x= -1
=> Hàm số y= f(x) đạt cực tiểu tại điểm x= -1
+ Tại điểm x=0 hoặc x= 2
- Đạo hàm tại 2 điểm đó bằng 0.
- Giá trị của hàm số y= f’(x) không đổi dấu khi đi qua điểm đó. Nên x= 0; x= 2 không là điểm cực trị của hàm số
Chọn A
Cách 1: Từ đồ thị hàm số của ta thấy có hai cực trị dương nên hàm số lấy đối xứng phần đồ thị hàm số bên phải trục tung qua trục tung ta được bốn cực trị, cộng thêm giao điểm của đồ thị hàm số với trục tung nữa ta được tổng cộng là cực trị.
Đáp án A