Khẳng định nào sau đây là khẳng định sai?
A. Phương trình có ít nhất 1 nghiệm trong khoảng (0;1).
B. Phương trình có nghiệm với .
C. Phương trình luôn có nghiệm.
D. Phương trình luôn có nghiệm.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án B
Có 1 khẳng định đúng là: Nếu f x liên tục trên a ; b và f a . f b < 0 thì phương trình f x = 0 có ít nhất một nghiệm trên a ; b
*Xét phương trình (m2 +1).x2 – (m- 6)x - 2= 0 có a= m2 + 1 >0 và c = -2 < 0 nên ac< 0 mọi m.
=> Phương trình (1) luôn có nghiệm mọi m.
* Phương trình x 2 + m + 3 x - 1 = 0 có ac= 1. (-1) < 0 nên phương trình này luôn có nghiệm mọi m.
* Xét (3) mx2 - 2x – m = 0 . Khi m= 0 thì (3) trở thành: - 2x = 0 đây là phương trình bậc nhất có nghiệm duy nhất là x = 0.
* Xét (4) có :
∆ = - 2 m 2 - 4 . 2 - 1 - m = 4 m 2 + 8 + 8 m = 4 m 2 + 8 m + 4 + 4 = 4 m + 1 2 + 4 > 0 ∀ m
Nên trình (4) luôn có 2 nghiệm phân biệt với mọi m.
Chọn C.
Đáp án C
3 log 2 2 − log 2 x − 1 = 0 ⇒ log 2 x 1 + log 2 x 2 = − b a = 1 3 ⇒ log 2 x 1 x 2 = 1 3 ⇔ x 1 x 2 = 2 3 .
Đáp án C
3 log 2 2 x − log 2 x − 1 = 0 → log 2 a + log 2 b = 1 3 ⇔ log 2 a b = 1 3 ⇔ a b = 2 3 .
Giả sử khẳng định Q là đúng A + 51 có tận cùng là 2
P là khẳng định sai (vì không thể là bình phương số tự nhiên)
Khi đó A – 38 có tận cùng là 3 R là khẳng định sai (vì không là bình phương số tự nhiên)
Vậy Q là khẳng định sai và P, R là hai khẳng định đúng.
Giả sử khẳng định Q là đúng A + 51 có tận cùng là 2
P là khẳng định sai (vì không thể là bình phương số tự nhiên)
Khi đó A – 38 có tận cùng là 3 R là khẳng định sai (vì không là bình phương số tự nhiên)
Vậy Q là khẳng định sai và P, R là hai khẳng định đúng.
Đáp án C
Phương trình
3 log 2 2 x - log 2 x - 1 = 0
→ log 2 a + log 2 b = 1 3 ⇔ log 2 a b = 1 3 ⇔ a b = 2 3
Đáp án B