K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 8 2017

Đáp án B

Ta có: log a 2019 + log a 2019 + ... + log a n 2019

= log a 2019 + 2 log 2019 + ... + n log a 2019

= log a 2019 1 + 2 + ... + n = n 2 n + 1 log a 2019

= 2033136 log a 2019 ⇒ n 2 n + 1 = 2033136

⇔ n 2 + n − 4066272 = 0 ⇔ n = 2016 n = − 2017 ⇒ n = 2016.

HQ
Hà Quang Minh
Giáo viên
22 tháng 9 2023

Đáp án C.

22 tháng 9 2023

Tham khảo:

a) Ta có: \(M = {a^{{{\log }_a}M}},N = {a^{{{\log }_a}N}} \Rightarrow MN = {a^{{{\log }_a}M}}.{a^{{{\log }_a}N}} = {a^{{{\log }_a}M + {{\log }_a}N}}\)

Mặt khác: \(MN = {a^{{{\log }_a}\left( {MN} \right)}}\)

Vậy \({a^{{{\log }_a}M + {{\log }_a}N}} = {a^{{{\log }_a}\left( {MN} \right)}} \Leftrightarrow {\log _a}M + {\log _a}N = {\log _a}\left( {MN} \right)\)

b)

\(log_a\left(a^3b^2\right)=log_aa^3+log_ab^2=3+2\cdot log_ab\)

=>B

QT
Quoc Tran Anh Le
Giáo viên
22 tháng 9 2023

a)    \({\log _c}b = {\log _a}b.{\log _c}a \Leftrightarrow {a^{{{\log }_c}b}} = {a^{{{\log }_a}b.{{\log }_c}a}} \Leftrightarrow {c^{{{\log }_c}b}} = {\left( {{c^{{{\log }_c}a}}} \right)^{{{\log }_a}b}} \Leftrightarrow b = {a^{{{\log }_a}b}} \Leftrightarrow b = b\) (luôn đúng)

Vậy \({\log _c}b = {\log _a}b.{\log _c}a\)

b)    Từ \({\log _c}b = {\log _a}b.{\log _c}a \Leftrightarrow {\log _a}b = \frac{{{{\log }_c}b}}{{{{\log }_c}a}}\)

16 tháng 12 2018

Đáp án D.

Ta có

Khi đó

Đồng nhất hệ số, ta được

HQ
Hà Quang Minh
Giáo viên
23 tháng 8 2023

\(a,a^{log_ab^{\alpha}}=c\Leftrightarrow log_ac=log_ab^{\alpha}\Leftrightarrow c=b^{\alpha}\Rightarrow a^{log_ab^{\alpha}}=b^{\alpha}\\ a^{\alpha log_ab}=c\Leftrightarrow\alpha log_ab=log_ac\Leftrightarrow log_ab^{\alpha}=log_ac\Leftrightarrow b^{\alpha}=c\Rightarrow a^{\alpha log_ab}=b^{\alpha}\\ \Rightarrow a^{log_ab^{\alpha}}=a^{\alpha log_ab}\)

\(b,a^{log_ab^{\alpha}}=a^{\alpha log_ab}\\ \Rightarrow log_ab^{\alpha}=\alpha log_ab\)

2 tháng 1 2019