Cho cấp số cộng ( u n ) có u 3 + u 98 = 12 . Tính tổng 100 số hạng đầu của cấp số cộng đã cho.
A. 1200.
B. 800.
C. 900.
D. 600.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo đề, ta có: \(S_n=3003\)
=>\(n\cdot\dfrac{\left[2u1+\left(n-1\right)\cdot d\right]}{2}=3003\)
=>\(\dfrac{n\left[2+\left(n-1\right)\right]}{2}=3003\)
=>n(n+1)=6006
=>n^2+n-6006=0
=>(n-77)(n+78)=0
=>n=77(nhận) hoặc n=-78(loại)
Vậy: n=77
\(\left\{{}\begin{matrix}u_{14}=u_1+13d=18\\u_4=u_1+3d=-12\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}d=3\\u_1=-21\end{matrix}\right.\)
Tổng 16 số hạng đầu tiên:
\(S_{16}=\frac{16\left(2u_1+15d\right)}{2}=24\)
Ta có: u 2 + u 8 + u 9 + u 15 = 100
⇔ u 1 + d + u 1 + 7 d + u 1 + 8 d + u 1 + 14 d = 100 ⇔ 4 u 1 + 30 d = 100 ⇔ 2 u 1 + 15 d = 50.
Khi đó S 16 = 16 2 2 u 1 + 15 d = 8.50 = 400
Chọn đáp án D.
Đáp án B
Ta có: u 4 = u 1 + 3 d ⇒ u 1 = u 4 - 3 d = - 12 - 3 . 3 = - 21
Suy ra S 16 = 16 . u 1 + 16 . 15 2 d = 16 . - 21 + 16 . 15 2 . 3 = 24
Chọn C
Sử dụng tính chất của cấp số cộng và công thức tính tổng n số hạng đầu của cấp số cộng là
S n = n . u 1 + n ( n - 1 ) 2 . d
Đáp án B
Ta có:
S = u 2 2 + u 3 2 + u 4 2 = u 1 − 3 2 + u 1 − 6 2 + u 1 − 9 2 = 3 u 1 2 − 36 u 1 + 126 .
Do đó S đạt GTNN khi u 1 = 6 .
Vậy S 100 = 100.6 + 100.99 2 . − 3 = − 14250 .
Chọn C.
Phương pháp : Sử dụng tính chất của cấp số cộng và công thức tính tổng n số hạng đầu của cấp số cộng là