K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 1 2016

Ta có: M là trung điểm của AB

=>MB = 1/2 AB

          =1/2(2a)

         =a

Ta có: C thuộc MB

=>MC+CB=MB

Hay MC+b=a

=>MC=a-b

25 tháng 1 2016

khó bạn ấy mới đăng chứ

28 tháng 10 2017

 MC= AB -BC    => MC= a- b


A M B C

bài 1:  Cho đoạn thẳng AB và M là điểm bất kì thuộc đoạn thẳng đó. Vẽ về một phía của AB các tam giác đều AMD , BME . Gọi I là trung điểm của đoạn thẳng DE.  Khi M di chuyển trên đường thẳng AB:a, chứng minh MI luôn đi qua giao điểm của AD , BE.B, điểm I di chuyển trên đường nào ?Bài 2: Cho đoạn thẳng AB bằng 6 cm và M là điểm bất kì thuộc đoạn thẳng AB . vẽ tia Mx vuông góc với AB ....
Đọc tiếp

bài 1:  Cho đoạn thẳng AB và M là điểm bất kì thuộc đoạn thẳng đó. Vẽ về một phía của AB các tam giác đều AMD , BME . Gọi I là trung điểm của đoạn thẳng DE.  Khi M di chuyển trên đường thẳng AB:

a, chứng minh MI luôn đi qua giao điểm của AD , BE.

B, điểm I di chuyển trên đường nào ?

Bài 2: Cho đoạn thẳng AB bằng 6 cm và M là điểm bất kì thuộc đoạn thẳng AB . vẽ tia Mx vuông góc với AB . lấy N,P thuộc tia Mx sao cho MN = AM và MP=MB . Gọi I,K lần lượt là trung điểm của các đoạn thẳng AN , PB và O  là trung điểm của đoạn thẳng IK

a, tính độ dài khoảng cách từ O tới AB

b, Gọi C là giao điểm của tia AI và tia BP. Chứng minh rằng khi M di chuyển trên đoạn thẳng AB thì C  luôn cố định

c, khi điểm M di chuyển trên đoạn thẳng AB thì điểm O di chuyển trên đường nào ?

·

0
2 tháng 5 2021

M thuộc d nên MA = MB. Vậy  MB + MC = MA + MC. Trong tam giác MAC, ta có : MA + MC > AC. Vậy MB + MC > AC

 Vì CB < CA nên C và B nằm trong cùng một nửa mặt phẳng bờ d. Do đó A và C nằm trong hai nửa  mặt phẳng bờ d khác nhau. Do đó d cắt AC tại H.

Vậy khi M ≡≡ H thì : MB + MC = HB + HC = HA + HC

=> MB + MC = AC

Vậy ta có MB + MC ≥ AC

Khi M trùng với H thì HB + HC = AC.

Tức là MB + MC nhỏ nhất khi M ≡≡ H giao điểm của AC với d

19 tháng 6 2021

M thuộc d nên MA = MB. Vậy  MB + MC = MA + MC. Trong tam giác MAC, ta có : MA + MC > AC. Vậy MB + MC > AC

 Vì CB < CA nên C và B nằm trong cùng một nửa mặt phẳng bờ d. Do đó A và C nằm trong hai nửa  mặt phẳng bờ d khác nhau. Do đó d cắt AC tại H.

Vậy khi M ≡≡ H thì : MB + MC = HB + HC = HA + HC

=> MB + MC = AC

Vậy ta có MB + MC ≥ AC

Khi M trùng với H thì HB + HC = AC.

Tức là MB + MC nhỏ nhất khi M ≡≡ H giao điểm của AC với d