K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 3 2018

16 tháng 5 2021

1) ĐK \(\hept{\begin{cases}x\ne y\\y\ge-1\end{cases}}\)

Đặt \(\hept{\begin{cases}\frac{1}{x-y}=a\left(a\ne0\right)\\\sqrt{y+1}=b\left(b\ge0\right)\end{cases}}\)hệ phương trình đã cho trở thành

\(\hept{\begin{cases}2a+b=4\\a-3b=-5\end{cases}}\Leftrightarrow\hept{\begin{cases}2a+b=4\\2a-6b=-10\end{cases}}\Leftrightarrow\hept{\begin{cases}7b=14\\2a+b=4\end{cases}}\Leftrightarrow\hept{\begin{cases}a=1\\b=2\end{cases}\left(tm\right)}\)

\(\Rightarrow\hept{\begin{cases}\frac{1}{x-y}=1\\\sqrt{y+1}=2\end{cases}}\Leftrightarrow\hept{\begin{cases}x-y=1\\y+1=4\end{cases}}\Leftrightarrow\hept{\begin{cases}x=4\\y=3\end{cases}}\left(tm\right)\)

Vậy ... 

16 tháng 5 2021
ĐKXĐ: x ≠ y ; y ≥ − 1 Đặt 1 x − y = a ; √ y + 1 = b (ĐK: a ≠ 0 ; b ≥ 0 ) Khi đó hệ phương trình trở thành { 2 a + b = 4 a − 3 b = − 5 ⇔ { 6 a + 3 b = 12 a − 3 b = − 5 ⇔ { 7 a = 7 b = 4 − 2 a ⇔ { a = 1 ( tm ) b = 2 ( tm ) Với ⎧ ⎪ ⎨ ⎪ ⎩ a = 1 b = 2 ⇒ ⎧ ⎪ ⎨ ⎪ ⎩ 1 x − y = 1 √ y + 1 = 2 ⇒ { x − y = 1 y + 1 = 4 ⇔ { x − 3 = 1 y = 3 ⇔ { x = 4 ( tm ) y = 3 ( tm ) Vậy hệ phương trình đã cho có nghiệm { x = 4 y = 3 . 2) Xét phương trình hoành độ giao điểm giữa đường thẳng ( d ) và Parabol ( P ) là: x 2 = 2 ( m − 1 ) x − m 2 + 2 m ⇔ x 2 − 2 ( m − 1 ) x + m 2 − 2 m = 0 (1) a) Với m = 2 phương trình (1) trở thành: x 2 − 2 ( 2 − 1 ) x + 2 2 − 2.2 = 0 ⇔ x 2 − 2 x = 0 ⇔ x ( x − 2 ) = 0 ⇔ [ x = 0 x = 2 - Với x = 0 ⇒ y = 0 2 = 0 ⇒ A ( 0 ; 0 ) - Với x = 2 ⇒ y = 2 2 = 4 ⇒ B ( 2 ; 4 ) Vậy khi m = 2 thì ( P ) cắt ( d ) tại hai điểm phân biệt A ( 0 ; 0 ) ; B ( 2 ; 4 ) . b) Ta có: Δ ′ = b ′ 2 − a c = [ − ( m − 1 ) ] 2 − ( m 2 − 2 m ) = m 2 − 2 m + 1 − m 2 + 2 m = 1 > 0 Do Δ ′ > 0 nên phương trình (1) luôn có hai nghiệm phân biệt x 1 ; x 2 với mọi m . ⇒ Đường thẳng ( d ) luôn cắt Parabol ( P ) tại hai điểm phân biệt có hoành độ x 1 ; x 2 với mọi m . Khi đó theo hệ thức Viet, ta có: { x 1 + x 2 = 2 m − 2 x 1 x 2 = m 2 − 2 m Để đường thẳng ( d ) cắt Parabol ( P ) tại hai điểm phân biệt có hoành độ đối nhau ⇔ x 1 + x 2 = 0 ⇔ 2 m − 2 = 0 ⇔ m = 1 ( tm ) Vậy m = 1 thì đường thẳng ( d ) luôn cắt Parabol ( P ) tại hai điểm phân biệt có hoành độ đối nhau.
16 tháng 5 2021

1) ĐK \(\hept{\begin{cases}x\ge0\\y\ne1\end{cases}}\)

Đặt \(\hept{\begin{cases}2\sqrt{x}=a\left(a\ge0\right)\\\frac{1}{y-1}=b\left(b\ne0\right)\end{cases}}\)hệ phương trình đã cho trở thành 

\(\hept{\begin{cases}a+3b=5\\2a-b=3\end{cases}}\Leftrightarrow\hept{\begin{cases}2a+6b=10\\2a-b=3\end{cases}}\Leftrightarrow\hept{\begin{cases}7b=7\\2a-b=3\end{cases}}\Leftrightarrow\hept{\begin{cases}a=2\\b=1\end{cases}\left(tm\right)}\)

\(\Rightarrow\hept{\begin{cases}2\sqrt{x}=2\\\frac{1}{y-1}=1\end{cases}}\Rightarrow\hept{\begin{cases}x=1\\y=2\end{cases}}\left(tm\right)\)

Vậy ... 

4 tháng 6 2021

1,\(\left\{{}\begin{matrix}2\sqrt{x}+\dfrac{3}{y-1}=5\\4\sqrt{x}-\dfrac{1}{y-1}=3\end{matrix}\right.\)       ĐKXĐ:x≥o,y≠1

\(\left\{{}\begin{matrix}4\sqrt{x}+\dfrac{6}{y-1}=10\\4\sqrt{x}-\dfrac{1}{y-1}=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{7}{y-1}=7\\4\sqrt{x}-\dfrac{1}{y-1}=3\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}y-1=1\\4\sqrt{x}-\dfrac{1}{y-1}=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y-1=1\\4\sqrt{x}-\dfrac{1}{1}=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=2\\4\sqrt{x}=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=2\\\sqrt{x}=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=2\\x=1\end{matrix}\right.\left(TM\right)\)

vậy hpt đã cho có nghiệm duy nhất (x,y)=(1,2)

2,a, xét pthđgđ của (d) và (p) khi m=3:

x\(^2\)=3x-1⇔\(x^2-3x+1=0\)

Δ=(-3)\(^2\)-4.1.1=5>0

⇒pt có 2 nghiệm pb

\(x_1=\dfrac{3+\sqrt{5}}{2}\) ,\(x_2=\dfrac{3-\sqrt{5}}{2}\)

thay x=x\(_1\)=\(\dfrac{3+\sqrt{5}}{2}\) vào hs y=x\(^2\) ta được:

y=(\(\dfrac{3+\sqrt{5}}{2}\))\(^2\)=\(\dfrac{14+6\sqrt{5}}{4}\)⇒A(\(\dfrac{3+\sqrt{5}}{2},\dfrac{14+6\sqrt{5}}{4}\))

thay x=x\(_2\)=\(\dfrac{3-\sqrt{5}}{2}\) vào hs y=x\(^2\) ta được:

y=\(\left(\dfrac{3-\sqrt{5}}{2}\right)^2=\dfrac{14-6\sqrt{5}}{4}\)⇒B(\(\dfrac{3-\sqrt{5}}{2},\dfrac{14-6\sqrt{5}}{4}\))

vậy tọa độ gđ của (d) và (p) là A(\(\dfrac{3+\sqrt{5}}{2},\dfrac{14+6\sqrt{5}}{4}\)) và B (\(\dfrac{3-\sqrt{5}}{2},\dfrac{14-6\sqrt{5}}{4}\))

b,xét pthđgđ của (d) và (p) :

\(x^2=mx-1\)\(x^2-mx+1=0\) (*)

                       Δ=(-m)\(^2\)-4.1.1=m\(^2\)-4

⇒pt có hai nghiệm pb⇔Δ>0

                                  ⇔m\(^2\)-4>0⇔m>16

với m>16 thì pt (*) luôn có hai nghiệm pb \(x_1,x_2\)

theo hệ thức Vi-ét ta có:

(I) \(\left\{{}\begin{matrix}x_1+x_2=m\\x_1.x_2=1\end{matrix}\right.\)

\(x_1,x_2\) TM \(x_2\)(x\(_1\)\(^2\)+1)=3

\(x_2.x_1^2\)+\(x_2\)=3⇔\(x_2.x_1.x_1+x_2=3\)⇔(\(x_2.x_1\))(\(x_1+x_2\))=3 (**)

thay  (I) vào (**) ta được:

1.m=3⇔m=3 (TM m≠0)

vậy m=3 thì (d) cắt (p) tại hai điểm pb có hoanh độ \(x_1.x_2\) TM \(x_2\)(\(x_1^2+1\))=3

                      

 

 

18 tháng 5 2021

Hoành độ giao điểm thoảng mãn pt : 

\(2x^2=3x-1\Leftrightarrow2x^2-3x+1=0\)

\(\Delta=9-8=1\)

\(x_1=\frac{3-1}{4}=\frac{1}{2};x_2=\frac{3+1}{4}=1\)

Thay x = 1/2 vào (d) ta được : \(y=\frac{3}{2}-1=\frac{1}{2}\)

Thay x = 1 vào (d) ta được : \(y=3-1=2\)

Vậy tọa độ giao điểm của (P) và (d) là A ( 1/2 ; 1/2 ) ; B( 1 ; 2 ) 

18 tháng 5 2021

Tọa độ giao điểm 2 đthg: \(2x^2\) =3x-1

<=>\(2x^2\)- 3x+1=0

Có dạng a+b+c=2-3+1=0

=>\(x_1=1\)   =>  y=2.\(1^2\)=2   =>tọa độ iao điểm(x;y)=(1;2)

    \(x_2=\frac{1}{2}\)  =>y=2.\(\left(\frac{1}{2}\right)^2\)=1/2 =>tọa độ giao điẻm(x;y)=(\(\frac{1}{2}\);\(\frac{1}{2}\))

b: Phương trình hoành độ giao điểm là:

\(-\dfrac{1}{2}x^2=-\dfrac{1}{2}x-1\)

\(\Leftrightarrow-\dfrac{1}{2}x^2+\dfrac{1}{2}x+1=0\)

\(\Leftrightarrow x^2-x-2=0\)

\(\Leftrightarrow\left(x-2\right)\left(x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-1\end{matrix}\right.\)

Thay x=2 vào (P), ta được:

\(y=\dfrac{-2^2}{2}=-2\)

Thay x=-1 vào (P), ta được:

\(y=-\dfrac{1^2}{2}=-\dfrac{1}{2}\)

Câu 1: 

ĐKXĐ: \(\left\{{}\begin{matrix}x\ne1\\y\ne-2\end{matrix}\right.\)

Ta có: \(\left\{{}\begin{matrix}\dfrac{3}{x-1}-\dfrac{2}{y+2}=4\\\dfrac{2x}{x-1}+\dfrac{1}{y+2}=5\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{3}{x-1}-\dfrac{2}{y+2}=4\\\dfrac{2x-2+2}{x-1}+\dfrac{1}{y+2}=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{3}{x-1}-\dfrac{2}{y+2}=4\\\dfrac{2}{x-1}+\dfrac{1}{y+2}=3\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{6}{x-1}-\dfrac{4}{y+2}=8\\\dfrac{6}{x-1}+\dfrac{3}{y+2}=9\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{-7}{y+2}=-1\\\dfrac{6}{x-1}+\dfrac{3}{y+2}=9\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y+2=7\\\dfrac{6}{x-1}+\dfrac{3}{7}=9\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=5\\\dfrac{6}{x-1}=\dfrac{60}{7}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-1=\dfrac{7}{10}\\y=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{17}{10}\left(nhận\right)\\y=5\left(nhận\right)\end{matrix}\right.\)

Vậy: Hệ phương trình có nghiệm duy nhất là \(\left(x,y\right)=\left(\dfrac{17}{10};5\right)\)

Câu 2: 

a) Phương trình hoành độ giao điểm của (P) và (d) là:

\(x^2=3x+m^2-1\)

\(\Leftrightarrow x^2-3x-m^2+1=0\)

\(\Delta=\left(-3\right)^2-4\cdot1\cdot\left(-m^2+1\right)\)

\(=9-4\left(-m^2+1\right)=9+4m^2-4=4m^2+5>0\forall m\)

Vậy: (d) luôn cắt (P) tại hai điểm phân biệt với mọi m

13 tháng 3 2023

Ta có:

Prabol đi qua điểm M(2;3) và N(-1,4)

=> \(\left\{{}\begin{matrix}4a+2b+2=3\\a-b+2=4\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=\dfrac{5}{6}\\b=-\dfrac{7}{6}\end{matrix}\right.\)

=> chọn B

9 tháng 5 2022

Hoành độ giao điểm (P) ; (d) tm pt 

\(x^2-2x-m+2=0\)

\(\Delta'=1-\left(-m+2\right)=m+3\)

Để (P) cắt (d) tại 2 điểm pb khi m > -3 

Theo Vi et \(\left\{{}\begin{matrix}x_1+x_2=2\\x_1x_2=-m+2\end{matrix}\right.\)

Ta có \(\left(x_1-x_2\right)^2=4\Leftrightarrow\left(x_1+x_2\right)^2-4x_1x_2=4\)

Thay vào ta được \(4+4\left(m-2\right)=4\Leftrightarrow4m-4=4\Leftrightarrow m=2\)(tm) 

9 tháng 5 2022

\(\left\{{}\begin{matrix}\dfrac{9}{x+1}-6y=-3\\\dfrac{10}{x+1}+6y=22\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{19}{x+1}=-19\\y=\dfrac{\dfrac{3}{x+1}+1}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-2\\y=-1\end{matrix}\right.\)