Người ta đặt 3 điện tích q 1 = 8 . 10 - 9 C , q 2 = q 3 = - 8 . 10 - 9 C tại ba đỉnh của tam giác đều ABC cạnh a = 6 cm trong không khí. Xác định lực tác dụng lên q 0 = 6 . 10 - 9 C đặt ở tâm O của tam giác ?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) vì \(q_1\) và \(q_2\) trái dấu nên \(q_3\) không thể đặc ở giữa \(AB\) và cũng không thể nằm ngoài giá của \(\overrightarrow{AB}\) vì khi đó tổng các lực tác dụng lên \(q_3\) sẽ khác không .
theo định luật \(Cu-lông\) ta có :
\(F_{13}=\dfrac{k.\left|q_1q_3\right|}{\varepsilon AC^2}=\dfrac{k\left|2.10^{-8}q_3\right|}{\varepsilon AC^2}\) ; \(F_{23}=\dfrac{k\left|q_2q_3\right|}{\varepsilon BC^2}=\dfrac{k\left|-8.10^{-8}q_3\right|}{\varepsilon BC^2}=\dfrac{k\left|8.10^{-8}q_3\right|}{\varepsilon BC^2}\)
\(\)để \(q_3\) cân bằng thì \(F_{13}=F_{23}\Leftrightarrow\dfrac{k\left|2.10^{-8}q_3\right|}{\varepsilon AC^2}=\dfrac{k\left|8.10^{-8}q_3\right|}{\varepsilon BC^2}\)
\(\Leftrightarrow\dfrac{AC^2}{BC^2}=\dfrac{2.10^{-8}}{8.10^{-8}}=\dfrac{1}{4}\Leftrightarrow\dfrac{AC}{BC}=\dfrac{1}{2}\Leftrightarrow BC=2AC\)
\(\Rightarrow A\) là trung điểm của \(BC\) với đoạn \(AB=8cm\) .
b) theo nhận xét ta thấy \(q_3< 0\) vì nếu \(q_3>0\) thì \(F_{31}\) cùng hướng với \(F_{21}\) nên \(q_1\) không thể nào cân bằng
để \(q_1\) và \(q_2\) cần bằng thì : \(\left\{{}\begin{matrix}F_{31}=F_{21}\\F_{32}=F_{12}\end{matrix}\right.\Leftrightarrow F_{31}=F_{21}=F_{32}\)
nên ta chỉ cần \(F_{31}=F_{21}\) là đủ
\(\Rightarrow\dfrac{K\left|q_3q_1\right|}{\varepsilon AC^2}=\dfrac{k\left|q_2q_1\right|}{\varepsilon AB^2}\Leftrightarrow\dfrac{k\left|q_3q_1\right|}{\varepsilon8^2}=\dfrac{k\left|q_2q_1\right|}{\varepsilon8^2}\Leftrightarrow\left|q_3\right|=\left|q_2\right|\)
\(\Leftrightarrow\left|q_3\right|=\left|-8.10^{-8}\right|=8.10^{-8}\Leftrightarrow q_3=\pm8.10^{-8}\)
mà \(q_3< 0\Rightarrow q_3=-8.10^{-8}\)
vậy \(q_3=-8.10^{-8}\)
Hai điện tích đẩy nhau => q1 và q2 cùng dấu
q1 + q2 = – 6.10-6 C (1) => |q1q2| = q1q2
F = 1,8 N; |q1| > |q2|; r = 20cm = 20.10-2m; ε = 1
\(F=9.10^9.\frac{\left|q_1q_2\right|}{r^2}\Rightarrow\left|q_1q_2\right|=8.10^{-12}\) (2)
Từ (1) và (2) => q1 = – 4.10-6 C; q2 = – 2.10-6 C.
a/
+ + A B + C q1 q2 q3 F F F 23 13 hl → → →
Ta có: \(\vec{F_{hl}}=\vec{F_{13}}+\vec{F_{23}}\)
Do \(\vec{F_{13}}\uparrow\downarrow\vec{F_{23}}\) nên: \(F_{hl}=\left|F_{13}-F_{23}\right|\) (1)
\(F_{13}=9.10^9\frac{\left|q_1q_2\right|}{AC^2}=0,045N\)
\(F_{23}=9.10^9\frac{\left|q_1q_2\right|}{BC^2}=0,01N\)
Thay vào (1) ta được \(F_{hl}=0,035N\)
b/
+ + + A B D q1 q2 q3 F F F 23 13 hl → → →
Hợp lực: \(\vec{F_{hl}}=\vec{F_{13}}+\vec{F_{23}}\)
Do hai lực cùng phương cùng chiều nên độ lớn:
\(F_{hl}=F_{13}+F_{23}\)(2)
\(F_{13}=9.10^9.\frac{\left|q_1q_3\right|}{AD^2}=7,2.10^{-3}N\)
\(F_{23}=9.10^9.\frac{\left|q_2q_3\right|}{BD^2}=0,9.10^{-3}N\)
Thế vào (2) ta được \(F_{hl}=8,1.10^{-3}N\)
a. Điện thế tại O: V O = V 1 + V 2 = k q 1 A O + k q 2 B O = k 10 − 8 A O + k ( − 10 − 8 ) B O = 0
b. Điện thế tại M: V M = V 1 + V 2 = k q 1 A M + k q 2 B M
Với B M = A B 2 + A M 2 = 10
→ V M = k q 1 A M + k q 2 B M = 9.10 9 10 − 8 6.10 − 2 + 9.10 9 − 10 − 8 10.10 − 2 = 600 V
c. Điện tích q di chuyển trong điện trường của q 1 , q 2 gây ra từ O đến M có công không phụ thuộc hình dạng đường đi mà chỉ phụ thuộc vào vị trí O và M: → A O M = q ( V O − V M ) = − 10 − 9 ( 0 − 600 ) = 6.10 − 7 ( J )
Lực điện tổng hợp tác dụng lên q 0 là: F → = F → 1 + F → 2 + F → 3 = F → 1 + F → 23
Trong đó: F 1 = k q 1 q 0 A O 2 = k q 1 q 0 2 3 a 3 2 2 = 3 k q 1 q 0 a 2 = 36.10 5
Vì BO = AO = CO nên q 1 = q 2 = q 3 → F 1 = F 2 = F 3
F → 2 ; F → 3 = 120 0 → F 1 = F 23