Cho hình vẽ bên, biết O A x ^ = 30 ° , O B y ^ = 150 ° và Ot là tia phân giác của A O B ^ = 60 ° . Chứng minh ba đường thẳng Ax, By và Ot đôi một song song.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
Vì ∠AOC = ∠BOD (đối đỉnh)
Vì ∠AOC + ∠BOD = 140o (gt)
⇒ ∠AOC = ∠BOD = 140o/2 = 70o
Ta có: ∠AOC + ∠AOD = ∠COD (2 góc kề bù)
Thay số: 70o + ∠AOD = 180o
∠AOD = 180o - 70o
∠AOD = 110o
Vì ∠AOD = ∠BOC (đối đỉnh)
⇒ ∠BOC = 110o
Vậy ∠AOC = 70o
∠BOD = 70o
∠AOD = 110o
∠BOC = 110o
Vì Ot là phân giác A O B ^ nên:
= A O t ^ = B O t ^ = 1 2 A O B ^ = 1 2 . 60° = 30°
=> x A O ^ = A O t ^ => Ax // Ot (1)
Lại có : t O A ^ + O B y ^ = 30° +150° = 180° => Ot // By. (2)
Từ (1) và (2), ta có Ax // By // Ot
oz nằm trong xoy, nhưng biết nằm chỗ nào mà xác định
Ta có: \(\widehat{AOt}=\widehat{BOt}=\dfrac{\widehat{AOB}}{2}=60^0:2=30^0\)(do Ot là phân giác \(\widehat{AOB}\))
Ta có: \(\widehat{AOt}=\widehat{OAx}=30^0\)
Mà 2 góc này so le trong
=> Ax//Ot(1)
Ta có: \(\widehat{BOt}+\widehat{OBy}=30^0+150^0=180^0\)
Mà 2 góc này là 2 góc trong cùng phía
=> By//Ot(2)
Từ (1),(2) => đpcm
vẽ tia of sao cho of là tia phân giác của góc xoy ms đúng chứ
a) Ta có: \(\widehat{xOm}+\widehat{yOm}=180^0\)(Hai góc kề bù)
\(\Leftrightarrow\widehat{yOm}+30^0=180^0\)
hay \(\widehat{yOm}=150^0\)
Vậy: \(\widehat{yOm}=150^0\)
b) Ta có: tia Ot là tia phân giác của \(\widehat{xOy}\)
nên \(\widehat{yOt}=\widehat{xOt}=\dfrac{\widehat{xOy}}{2}=\dfrac{180^0}{2}\)
hay \(\widehat{yOt}=90^0\)(đpcm)