K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 2 2018

Đáp án A

Nhận thấy  S 1  là diện tích hình phẳng giới hạn bởi parabol  y = 1 24 x 2 và phần elip nằm phía trên trục hoành.

Ta có phương trình hoành độ giao điểm của parabol y = 1 24 x 2 và elip  x 2 16 + y 2 1 = 1 là

15 tháng 11 2018

Đáp án A.

26 tháng 11 2017

31 tháng 10 2019

Chọn đáp án A

Phương trình hoành độ giao điểm của parabol y = 3 2 x 2   và nửa đường elip 

22 tháng 2 2019

8 tháng 12 2017

Chọn D.

Hoành độ giao điểm của (P) và ( C) là nghiệm của   3 x 2   =   4 - x 2   <=> x = 1 hoặc x = -1 

Khi đó, diện tích cần tính là H = 2x ( ∫ 0 1 4 - x 2 d x   -   ∫ 0 1 3 x 2 d x ) = 2 π   +   3 3

13 tháng 11 2019

12 tháng 9 2019

Chọn A

2 tháng 9 2019

Đáp án B

Xét phương trình tương giao:

3 x 2 = 4 − x 2 ⇔ 3 x 4 = 4 − x 2 ⇔ x 2 = 1 ⇒ x = ± 1 x 2 = − 4 3    ( L ) S = ∫ 0 1 3 x 2 d x + ∫ 1 2 4 − x 2 d x = 3 x 3 3 1 0 + S 2 S 2 : x = 2 sin t , t ∈ ( − π 2 ; π 2 ) ⇒ d x = 2 cos t d t S 2 : ∫ π 6 π 2 2 cos t .2 cos t d t = ∫ π 6 π 2 4 cos 2 t d t = 2 ∫ π 6 π 2 ( 1 + cos 2 t ) d t = 2 [ t + sin 2 t 2 ] π 2 π 6 = 2 π 3 − 3 2 ⇒ S = 3 3 + 2 π 3 − 3 2

13 tháng 1 2017

Đáp án B.

Xét phương trình tương giao: