GT : Tam giác ABC có 2 đường cao BD , CE ;
M , N lần lượt là trung điểm của BC và DE
KL : cm MN vuông góc với DE
( Vẽ hình dùm mình nha )
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABD vuông tại D và ΔACE vuông tại E có
góc CAE chung
Do đó; ΔABD đồng dạng với ΔACE
b: Xét ΔCKH vuông tại K và ΔCEB vuông tại E có
góc ECK chung
Do đó: ΔCKH\(\sim\)ΔCEB
Suy ra: CK/CE=CH/CB
hay \(CH\cdot CE=CB\cdot CK\)
Đề bài thấy vô lý quá
Nó cho tam giác ABC với BD , CE là đường cao tương ứng , vậy mà kết luận lại nói chứng minh tam giác ABC vuông cân tại A , chứng tỏ BA và CA vuông góc nhau mà BD , CE là đường cao nên trùng nhau .
=> Bài không thể giải
a: Xét ΔABD vuông tại D và ΔACE vuông tại E có
AB=AC
góc BAD chung
=>ΔABD=ΔACE
=>AD=AE
Xét ΔABC có AE/AB=AD/AC
nên ED//BC
=>BEDC là hình thang
mà BD=CE
nên BEDC là hình thang cân
b: góc ABD+góc DBC=góc ABC
góc ACE+góc ECB=góc ACB
mà góc ABD=góc ACE; góc ABC=góc ACB
nên góc DBC=góc ECB
=>ΔHBC cân tại H
c: AB=AC
HB=HC
=>AH là trung trực của BC
-_- cái gì thế này