Miền nghiệm của hệ bất phương trình: x + y ≤ 1 x - 3 y ≥ 4 y ≤ 2 được biểu diễn bởi phần không bị gạch chéo của hình nào trong hình sau:
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tham khảo:
Vẽ đường thẳng \(d:x + y - 3 = 0\) đi qua hai điểm \(A(0;3)\) và \(B\left( {1;2} \right)\)
Xét gốc tọa độ \(O(0;0).\) Ta thấy \(O \notin \Delta \) và \(0 + 0 - 3 = - 3 < 0\)
Do đó, miền nghiệm của bất phương trình là nửa mặt phẳng kể cả bờ \(d\), chứa gốc tọa độ O
(miền không gạch chéo trên hình)
Vẽ đường thẳng \(d': - 2x + y + 3 = 0\) đi qua hai điểm \(A(1; - 1)\) và \(B\left( {2;1} \right)\)
Xét gốc tọa độ \(O(0;0).\) Ta thấy \(O \notin \Delta \) và \( - 2.0 + 0 + 3 = 3 > 0\)
Do đó, miền nghiệm của bất phương trình là nửa mặt phẳng không kể bờ \(d'\), chứa gốc tọa độ O
(miền không gạch chéo trên hình)
Vậy miền không gạch chéo trong hình trên là miền nghiệm của hệ bất phương trình đã cho.
Tham khảo:
Xác định miền nghiệm của bất phương trình \(x + y < 1\)
+ Vẽ đường thẳng d: x+y=1 (nét đứt) đi qua (0;1) và (1;0)
+ Vì 0+0=0 < 1 nên điểm O(0;0) thuộc miền nghiệm của bpt
Do đó, miền nghiệm của bất phương trình \(x + y < 1\) là nửa mặt phẳng bờ d chứa gốc tọa độ O.
Xác định miền nghiệm của bất phương trình \(2x - y \ge 3\)
+ Vẽ đường thẳng d’: \(2x - y = 3\) đi qua (1;-1) và (0;-3)
+ Vì 2.0-0=0
Do đó, miền nghiệm của bất phương trình \(2x - y \ge 3\) là nửa mặt phẳng bờ d’ không chứa gốc tọa độ O.
Vậy miền không bị gạch là miền nghiệm của hệ bất phương trình đã cho (Không đường thẳng d’).
Tham khảo:
a) Ta có: \( - x + 2 + 2(y - 2) < 2(1 - x) \Leftrightarrow 2y + x - 4 < 0\)
Vẽ đường thẳng \(\Delta :2y + x - 4 = 0\) đi qua hai điểm \(A(2;1)\) và \(B\left( {0;2} \right)\)
Xét gốc tọa độ \(O(0;0).\) Ta thấy \(O \notin \Delta \) và \(2.0 + 0 - 4 = - 4 < 0\)
Do đó, miền nghiệm của bất phương trình là nửa mặt phẳng không kể bờ \(\Delta \), chứa gốc tọa độ O
(miền không gạch chéo trên hình)
b) Ta có: \(3(x - 1) + 4(y - 2) < 5x - 3 \Leftrightarrow 4y - 2x - 8 < 0 \Leftrightarrow 2y - x - 4 < 0\)
Vẽ đường thẳng \(\Delta :2y - x - 4 = 0\) đi qua hai điểm \(A(0;2)\) và \(B\left( {1; - 2} \right)\)
Xét gốc tọa độ \(O(0;0).\) Ta thấy \(O \notin \Delta \) và \(2.0 - 0 - 4 = - 4 < 0\)
Do đó, miền nghiệm của bất phương trình là nửa mặt phẳng không kể bờ \(\Delta \), chứa gốc tọa độ O
(miền không gạch chéo trên hình)
\(\begin{array}{l}\dfrac{{x + y}}{2} \ge \dfrac{{2x - y + 1}}{3}\\ \Leftrightarrow 3\left( {x + y} \right) \ge 2\left( {2x - y + 1} \right)\\ \Leftrightarrow 3x + 3y \ge 4x - 2y + 2\\ \Leftrightarrow x - 5y \le - 2\end{array}\)
Biểu diễn miền nghiệm của bất phương trình:
Bước 1: Vẽ đường thẳng d:\(x - 5y = - 2\) (nét liền) đi qua A(-2;0) và B(0;0,4)
Bước 2: Lấy tọa độ điểm O(0;0) thay vào biểu thức x-5y ta được: x-5y=0-5.0=0>-2
=> Điểm O không thuộc miền nghiệm của bất phương trình.
Vậy miền nghiệm của BPT đã cho là nửa mặt phẳng có bờ là đường thẳng d:\(x - 5y = - 2\) và không chứa gốc tọa độ O.
Bước 1: Vẽ đường thẳng \(d_1: y-2x=2\) đi qua (0;2) và (-1;0).
Lấy điểm O(0;0) không thuộc \(d_1\). Vì 0-2.0=0<2 nên O thuộc miền nghiệm
Miền nghiệm của BPT \(y - 2x \le 2\) là nửa mp bờ \(d_1\), chứa điểm O.
Bước 2: Vẽ đường thẳng \(d_2: y=4\) đi qua (0;4) và (1;4).
Lấy điểm O(0;0) không thuộc \(d_2\). Vì 0<4 nên O thuộc miền nghiệm.
Miền nghiệm của BPT \(y \le 4\) là nửa mp bờ \(d_2\), chứa điểm O.
Bước 3: Vẽ đường thẳng \(d_3: x=5\) đi qua (5;0) và (5;1).
Lấy điểm O(0;0) không thuộc \(d_3\). Vì 0<5 nên O thuộc miền nghiệm
Miền nghiệm của BPT \(x \le 5\) là nửa mp bờ \(d_3\), chứa điểm O.
Bước 4: Vẽ đường thẳng \(d_4: x + y = - 1\) đi qua (-1;0) và (0;-1).
Lấy điểm O(0;0) không thuộc \(d_4\). Vì 0+0=0>-1 nên O thuộc miền nghiệm.
Miền nghiệm của BPT \(x + y \ge - 1\) là nửa mp bờ \(d_4\), chứa điểm O.
Miền biểu diễn nghiệm của hệ bất phương trình là miền tứ giác ABCD với
A(1;4); B(5;4), C(5;-6); D(-1;0).
Giá trị F tại các điểm A, B, C, D lần lượt là:
\(F\left( {1;4} \right) = - 1 - 4 = - 5\)
\(F\left( {5;4} \right) = - 5 - 4 = - 9\)
\(F\left( {5;-6} \right) = - 5 - (-6) = 1\)
\(F\left( { - 1;0} \right) = - \left( { - 1} \right) - 0 = 1\)
Vậy giá trị lớn nhất của biểu thức F(x;y) là 1 và giá trị nhỏ nhất của biểu thức F(x;y) là -9.