Nghiệm của phương trình \(\dfrac{\left|x-2\right|}{\sqrt{x-1}}\)=\(\dfrac{x-2}{\sqrt{x-1}}\) thỏa mãn điều kiện nào sau đây:
A. x > 1 B. \(x\ge2\) C. x < 2 D. Một điều kiện khác
Gía trị nào của biểu thức S= \(\sqrt{7-4\sqrt{3}}\) - \(\sqrt{7+4\sqrt{3}}\) là:
A. 4 B. \(2\sqrt{3}\) C. \(-2\sqrt{3}\) D. -4
\(\dfrac{\left|x-2\right|}{\sqrt{x-1}}=\dfrac{x-2}{\sqrt{x-1}}\Leftrightarrow\left\{{}\begin{matrix}x-2\ge0\\x-1>0\end{matrix}\right.\)
\(\Rightarrow x\ge2\)
\(S=\sqrt{7-4\sqrt{3}}-\sqrt{7+4\sqrt{3}}=\sqrt{\left(2-\sqrt{3}\right)^2}-\sqrt{\left(2+\sqrt{3}\right)^2}\)
\(=2-\sqrt{3}-\left(2+\sqrt{3}\right)=-2\sqrt{3}\)