Giá trị của tham số a để hàm số y = x + 2 - 2 x - 2 k h i x ≠ 2 a + 2 x k h i x = 2 liên tục tại x = 2 là
A. 1 4
B. 1
C. - 15 4
D. 4
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b, \(\left\{{}\begin{matrix}x^2-2x-3\le0\\x^2-2mx+m^2-9\ge0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-1\le x\le3\\x^2-2mx+m^2-9\ge0\end{matrix}\right.\)
Yêu cầu bài toán thỏa mãn khi phương trình \(f\left(x\right)=x^2-2mx+m^2-9\ge0\) có nghiệm \(x\in\left[-1;3\right]\)
\(\Leftrightarrow\left\{{}\begin{matrix}\Delta'=m^2-m^2+9=9>0,\forall m\\-1< m< 3\\f\left(-1\right)=m^2+2m-8\ge0\\f\left(3\right)=m^2-6m\ge0\end{matrix}\right.\)
\(\Leftrightarrow m\in[2;3)\cup(-1;0]\)
a: Thay x=1 và y=-1 vào (d), ta được:
\(\left(m-2\right)\cdot1+m+1=-1\)
=>m-2+m+1=-1
=>2m-1=-1
=>2m=0
=>m=0
b: Thay y=0 vào y=x+2, ta được:
x+2=0
=>x=-2
Thay x=-2 và y=0 vào y=(m-2)x+m+1, ta được:
-2(m-2)+m+1=0
=>-2m+4+m+1=0
=>5-m=0
=>m=5
a,nghịch biến x<0
`<=>4m+2<0`
`<=>4m< -2`
`<=>m< -1/2`
`b,(4m+2)x^2<=0`
Mà `x^2>=0`
`<=>4m+2<0`
`<=>4m<-2`
`<=>m<-1/2`
a) Để hàm số nghịch biến với mọi x<0 thì 4m+2>0
\(\Leftrightarrow4m>-2\)
hay \(m>-\dfrac{1}{2}\)
Vậy: Để hàm số nghịch biến với mọi x<0 thì \(m>-\dfrac{1}{2}\)
b) Để hàm số đạt giá trị lớn nhất là 0 thì 4m+2<0
hay \(m< -\dfrac{1}{2}\)
Chọn đáp án C