Cho hàm số f ( x ) = - 4 x 4 + 8 x 2 - 1 . Có bao nhiêu giá trị nguyên dương của m để phương trình f(x)=m có đúng 2 nghiệm phân biệt
A. 3
B. 0
C. 2
D. 1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt t = 2 x ( t > 0 ) phương trình trở thành:
Xét hàm số trên khoảng 0 ; + ∞ có
Bảng biến thiên:
Với mỗi t > 0 cho một nghiệm duy nhất x = log 2 t Vậy phương trình có hai nghiệm thực phân biệt khi và chỉ khi (∗) có hai nghiệm phân biệt t > 0. Quan sát bảng biến thiên suy ra
Ta đi rút gọn Sm: Có
Do đó Vì vậy
Vậy điều kiện là
Có tất cả 27 số nguyên dương thoả mãn.
Chọn đáp án A.
Phương trình tương đương với: f ( x ) = - m 2 phương trình có 3 nghiệm thực phân biệt - 4 < - m 2 < 2 ⇔ - 4 < m < 8 Các giá trị nguyên dương là m ∈ 1 , 2 . . . 7
Chọn đáp án B.
Đáp án C
Đồ thị của hàm số được vẽ theo 2 bước:
+ Tịnh tiến đồ thị của hàm số y=f(x) qua bên phải 1 đơn vị.
+ Giữ nguyên phần bên phải, lấy đối xứng phần bên phải qua trục Oy
\(f^2\left(\left|x\right|\right)-\left(m-6\right)f\left(\left|x\right|\right)-m+5=0\) có \(a-b+c=0\) nên có các nghiệm \(\left[{}\begin{matrix}f\left(\left|x\right|\right)=-1\\f\left(\left|x\right|\right)=m-5\end{matrix}\right.\)
- Với \(f\left(\left|x\right|\right)=-1\Rightarrow\left|x\right|^2-4\left|x\right|+3=-1\Rightarrow\left|x\right|=2\Rightarrow x=\pm2\) có 2 nghiệm
- Xét \(f\left(\left|x\right|\right)=m-5\Leftrightarrow\left|x\right|^2-4\left|x\right|+8=m\) (1)
Từ BBT của \(y=\left|x\right|^2-4\left|x\right|+8\) dễ dàng suy ra (1) có 4 nghiệm pb khi \(4< m< 8\)
\(\Rightarrow m=\left\{5;6;7\right\}\) có 3 giá trị nguyên
Đáp án D
Dựa vào đồ thị suy ra có một giá trị nguyên dương của m để phương trình f(x)=m có đúng hai nghiệm phân biệt là m=3.