Cho tứ diện S.ABC có các tam giác SAB, SAC và ABC vuông cân tại A, S A = a . Gọi α là góc giữa hai mặt phẳng S B C và A B C bằng
A. 3
B. 1 2
C. 2
D. 1 3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn D.
Lời giải.
Ta có
Từ (1) và (2)
Gọi I là trung điểm AC
Mặt khác
Từ (3) và (4)
nên góc giữa hai mặt phẳng (SAC) và (SAB) bằng góc giữa hai đường thẳng HK và HC.
Xét tam giác CHK vuông tại K, có
Đáp án C
Dựng A E ⊥ B C .
Lại có S A ⊥ A B S A ⊥ A C ⇒ S A ⊥ B C
Do đó B C ⊥ S E A ⇒ S B C ; A B C ⏜ = S E A ⏜
Mặt khác:
A E = B C 2 = a 2 2 ⇒ tan α = t a n S E A ⏜ = S A A E = 2