Với a ≥ 0 và b ≥ 0, chứng minh a + b 2 ≥ a + b 2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Từ $a+b> c\Rightarrow a+b-c>0$ (cái này hiển nhiên)
Từ $|a-b|< c\Leftrightarrow |a-b|^2< c^2$
$\Leftrightarrow (a-b)^2< c^2$
$\Leftrightarrow (a-b-c)(a-b+c)<0$
Với $c>0$ thì $a-b-c< a-b+c$ nên để tích âm thì $a-b-c<0< a-b+c$
Hay $a-b-c<0$ và $a-b+c>0$
a) Chú ý m > 2 thì m > 0.
b) Chú ý a < 0 và b < 0 thì ab > 0. Khi đó a > b, nhân hai vế với 1 ab > 0 ta thu được 1 b > 1 a . Tương tự a > 0, b > 0, a > b ta được 1 a < 1 b .
Đề bài : Cho \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\left(a,b,c\ne0\right)\)và \(M=\frac{b^2c^2}{a}+\frac{c^2a^2}{b}+\frac{a^2b^2}{c}\)
Chứng minh M=3abc.
Trước tiên, ta chứng minh bài toán phụ : Cho x+y+z=0 . Chứng minh \(x^3+y^3+z^3=3xyz\)
Giải bài toán phụ như sau : Ta có : \(x+y+z=0\Rightarrow z=-\left(x+y\right)\Rightarrow z^3=-\left[x^3+y^3+3xy\left(x+y\right)\right]\)
\(\Rightarrow x^3+y^3+z^3=-3xy\left(x+y\right)=-3xy\left(-z\right)\)
\(\Rightarrow x^3+y^3+z^3=3xyz\)
Áp dụng vào bài đã cho, ta suy ra : \(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}=\frac{3}{abc}\)
Do đó : \(M=\frac{b^2c^2}{a}+\frac{c^2a^2}{b}+\frac{a^2b^2}{c}=\frac{a^2b^2c^2}{a^3}+\frac{a^2b^2c^2}{b^3}+\frac{a^2b^2c^2}{c^3}=a^2b^2c^2\left(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}\right)=a^2b^2c^2.\frac{3}{abc}=3abc\)Vậy \(M=3abc\)(đpcm)
Áp dụng bđt bunhiacopxki có:
\(\left(\dfrac{a^2}{x}+\dfrac{b^2}{y}+\dfrac{c^2}{z}\right)\left(x+y+z\right)\ge\left(a+b+c\right)^2\)
\(\Leftrightarrow\dfrac{a^2}{x}+\dfrac{b^2}{y}+\dfrac{c^2}{z}\ge\dfrac{\left(a+b+c\right)^2}{x+y+z}\)
Dấu "=" xảy ra <=> \(\dfrac{a}{x}=\dfrac{b}{y}=\dfrac{c}{z}\)
BĐT này gọi là BĐT Cauchy-Schwarz đó bạn.
Chứng minh BĐT: \(\dfrac{a^2}{x}+\dfrac{b^2}{y}\ge\dfrac{\left(a+b\right)^2}{x+y}\)
\(\Rightarrow\dfrac{a^2y+b^2x}{xy}\ge\dfrac{\left(a+b\right)^2}{x+y}\Rightarrow\left(a^2y+b^2x\right)\left(x+y\right)\ge\left(a+b\right)^2.xy\)
\(\Leftrightarrow a^2y^2+b^2x^2-2abxy\ge0\Leftrightarrow\left(ay-by\right)^2\ge0\) (luôn đúng)
Áp dụng BĐT trên vào đề:
Ta được: \(\dfrac{a^2}{x}+\dfrac{b^2}{y}+\dfrac{c^2}{z}\ge\dfrac{\left(a+b\right)^2}{x+y}+\dfrac{c^2}{z}\ge\dfrac{\left(a+b+c\right)^2}{x+y+z}\)
\(P=\dfrac{4}{a^2+b^2}+\dfrac{1}{ab}=\dfrac{4}{\left(a+b\right)^2-2ab}+\dfrac{1}{ab}=\dfrac{4}{2-2ab}+\dfrac{1}{ab}=\dfrac{2}{1-ab}+\dfrac{1}{ab}\)Áp dụng BĐT Bunhiacopxki dạng phân thức ta có:
\(\dfrac{2}{1-ab}+\dfrac{1}{ab}\ge\dfrac{\left(\sqrt{2}+1\right)^2}{1-ab+ab}=\left(\sqrt{2}+1\right)^2\) hay \(P\ge\left(\sqrt{2}+1\right)^2\)
Dấu "=" xảy ra khi \(\dfrac{\sqrt{2}}{1-ab}=\dfrac{1}{ab};a+b=\sqrt{2}\)
\(\Leftrightarrow\left\{{}\begin{matrix}a+b=\sqrt{2}\\ab=\dfrac{1}{\sqrt{2}+1}\end{matrix}\right.\Leftrightarrow\left(a;b\right)=\left(1;-1+\sqrt{2}\right),\left(-1+\sqrt{2};1\right)\)
Vì a ≥ 0 nên a xác định, b ≥ 0 nên b xác định
Ta có: a - b 2 ≥ 0 ⇒ a - 2 a b + b ≥ 0 ⇒ a + b ≥ 2 a b
⇒ a + b + a + b ≥ a + b + 2 a b
⇒ 2(a + b) ≥ a 2 + 2 a b + b 2