K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 5 2019

Đáp án B

3 tháng 7 2019

25 tháng 11 2017

10 tháng 4 2017

Chọn B

22 tháng 1 2017

12 tháng 3 2019

Chọn đáp án C

Dựa vào đồ thị ta thấy đồ thị hàm số y = f(x) có 2 điểm cực trị.

Để đồ thị hàm số  y = f x + m có 3 điểm cực trị thì đường thẳng y= -m cắt đồ thị y = f(x) tại 1 điểm duy nhất.

(Không tính điểm cực trị của đồ thị hàm số y = f(x))

Dựa vào đồ thị:

 

30 tháng 6 2019

4 tháng 9 2018

Đáp án B.

Hàm số y = f x + m  là một hàm số chẵn nên đồ thị đối xứng qua trục Oy. Mặt khác y = f x + m   = f x + m ∀ x ≥ 0 . Ta có phép biến đổi từ đồ thị hàm số y = f x  thành đồ thị hàm số  y = f x + m   :

* Nếu m > 0:

- Bước 1: Tịnh tiến đồ thị hàm số y = f x  sang trái m đơn vị.

- Bước 2: Xóa phần nằm bên trái Oy của đồ thị thu được ở Bước 1.

- Bước 3: Lấy đối xứng đồ thị thu được ở Bước 2 qua Oy.

* Nếu m=0  :

- Bước 1: Tịnh tiến đồ thị hàm số y = f x  sang phải m đơn vị.

- Bước 2: Xóa phần nằm bên trái Oy của đồ thị thu được ở Bước 1.

- Bước 3: Lấy đối xứng đồ thị thu được ở Bước 2 qua Oy.

Quan sát ta thấy đồ thị hàm số y = f x  có 2 điểm cực trị.

Để đồ thị hàm số y = x + m  có 5 điểm cực trị thì nhánh bên phải Oy của đồ thị hàm số y = x + m  phải có 2 điểm cực trị => Điểm cực trị  của đồ thị hàm số y = f x  phải được tịnh tiến sang phải  O y ⇒ m < − 1   .

14 tháng 1 2018

Chọn D.

Để phương trình f(x)=m+2 có 4 nghiệm phân biệt thì đường thẳng y=m+2 phải cắt đồ thị hàm số y=f(x) tại 4 điểm phân biệt.

Dựa vào đồ thị ta được -4<m+2<-3 => -6<m<-5

22 tháng 4 2019

Đáp án A

(*)

Đặt

Yêu cầu bài toán trở thành: Tìm m để phương trình có nghiệm  

Từ đồ thị đã cho, ta suy ra đồ thị của hàm số  

Từ đó ta có kể quả thỏa mãn yêu cầu bài toán