Cho hình lăng trụ đứng ABC.A'B'C' có đáy ABC là tam giác vuông tại A có BC = 2a. Biết góc giữa hai mặt phẳng (A'BC) và (ABC) bằng 60 ∘ và khoảng cách giữa hai đường thẳng A'A, BC bằng a 3 2 . Tính thể tích lăng trụ ABC.A'B'C'
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(SA\perp\left(ABC\right)\Rightarrow SA\perp BC\)
Mà \(BC\perp AB\Rightarrow BC\perp\left(SAB\right)\)
b/ Gọi N là trung điểm SA \(\Rightarrow MN\) là đường trung bình tam giác SAB
\(\Rightarrow MN//SB\Rightarrow SB//\left(CMN\right)\)
\(\Rightarrow d\left(SB;CM\right)=d\left(SB;\left(CMN\right)\right)=d\left(S;\left(CMN\right)\right)\)
Mặt khác SA cắt \(\left(CMN\right)\) tại N
\(NS=NA=\frac{1}{2}SA=a\Rightarrow d\left(S;\left(CMN\right)\right)=d\left(A;\left(CMN\right)\right)\)
\(CM=\sqrt{BC^2+BM^2}=\sqrt{a^2+\frac{a^2}{4}}=\frac{a\sqrt{5}}{2}\)
Kẻ \(AH\perp CM\Rightarrow\Delta MHA\sim\Delta MBC\) (tam giác vuông có 1 góc đối đỉnh)
\(\Rightarrow\frac{AH}{BC}=\frac{AM}{CM}\Rightarrow AH=\frac{BC.AM}{CM}=\frac{a\sqrt{5}}{5}\)
Từ A kẻ \(AK\perp NH\Rightarrow AK=d\left(A;\left(CMN\right)\right)\)
\(\frac{1}{AK^2}=\frac{1}{AN^2}+\frac{1}{AH^2}\Rightarrow AK=\frac{AN.AH}{\sqrt{AN^2+AH^2}}=\frac{a\sqrt{6}}{6}\)
\(S_{Xq}=\left(12+8+\sqrt{12^2+8^2}\right)\cdot10=\left(20+4\sqrt{13}\right)\cdot10\left(cm^2\right)\)