Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số máy của 3 đội lần lượt là x, y, z
mà tổng số máy của đội hai và ba là 14
⇒ y + z = 14
Vì số máy và số ngày là hai đại lượng tỉ lệ nghịch nên ta có:
2x = 3y = 4z
\(\frac{\Rightarrow x}{\frac{1}{2}}=\frac{y}{\frac{1}{3}}=\frac{Z}{\frac{1}{4}}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{Y}{\frac{1}{3}}=\frac{y+z}{\frac{1}{3}+\frac{1}{4}}=\frac{14}{7}=24\)
\(\Leftrightarrow x=24.\frac{1}{2}=12;y=24.\frac{1}{3}=8;z=24.\frac{1}{4}=6\)
Vậy số máy của ba đội lần lượt là 12 ; 8 ; 6
Bài 1:
Gọi x,y,z lần lượt là số máy của đội 1, đội 2,đội 3 (x,y,z >0)
Vì số ngày làm xong công việc tỷ lệ nghịch với số máy của mỗi đội nên ta có:
4x=6y=8z => \(\dfrac{4x}{24}=\dfrac{6y}{24}=\dfrac{8z}{24}=>\dfrac{x}{6}=\dfrac{y}{4}=\dfrac{z}{3}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{6}=\dfrac{y}{4}=\dfrac{z}{3}=\dfrac{x-y}{6-4}=\dfrac{2}{2}=1\)
Suy ra:
\(\dfrac{x}{6}=1=>x=6\)
\(\dfrac{y}{4}=1=>\)y=4
\(\dfrac{z}{3}=1=>\)z=3
Vậy số máy của đội 1, đội 2, đội 3 lần lượt là 6 máy,4 máy,3 máy.
gọi x,y,z là số máy của mỗi đội
ta có số máy tỉ lệ ngịch với số ngày hoàn thành công việc nên ta có
\(\hept{\begin{cases}10x=6y=4z\\x+y+z=31\end{cases}\text{ hay }\hept{\begin{cases}\frac{x}{\frac{1}{10}}=\frac{y}{\frac{1}{6}}=\frac{z}{\frac{1}{4}}\\x+y+z=31\end{cases}}}\)
áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\frac{x}{\frac{1}{10}}=\frac{y}{\frac{1}{6}}=\frac{z}{\frac{1}{4}}=\frac{x+y+z}{\frac{1}{10}+\frac{1}{6}+\frac{1}{4}}=\frac{31}{\frac{31}{60}}=60\)
thế nên \(\hept{\begin{cases}x=\frac{60}{10}=6\\y=\frac{60}{6}=10\\z=\frac{60}{4}=15\end{cases}}\)
Gọi số máy cày của 3 đội lần lượt là x,y,z (x,y,z khác 0;x,y,z thuộc N*)
Vì tổng số máy của đội 2 và đội 3 là 14 máy nên : y+z=14
Vì số máy và số ngày là 2 đại lượng tỉ lệ nghịch nên ta có:2x=3y=4z
=> x/1/2=y/1/3=z/1/4
ADTC dãy tỉ số = nhau ta có:
y/1/3=y+z/1/3+1/4=14/7/12=24
=> x/1/2=24=>x=12 (máy)
y/1/3=24.1/3=8 (máy)
z/1/4=24.1/4=6 (máy)
Vậy...
Gọi số máy của 3 đội lần lượt là \(x,y,z\left(x;y;z\inℕ^∗\right)\)
Mà tổng số máy của đội hai và ba là \(14\)
\(\Rightarrow\) \(y+z=14\)
Vì số máy và số ngày là hai đại lượng tỉ lệ nghịch nên ta có:
\(2x=3y=4z\)
\(\Rightarrow\)\(\frac{x}{\frac{1}{2}}=\frac{y}{\frac{1}{3}}=\frac{z}{\frac{1}{4}}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{x}{\frac{1}{2}}=\frac{y}{\frac{1}{3}}=\frac{z}{\frac{1}{4}}=\frac{y+z}{\frac{1}{3}+\frac{1}{4}}=\frac{14}{\frac{7}{12}}=24\)
Do đó:
\(\frac{x}{\frac{1}{2}}=24\Rightarrow x=24.\frac{1}{2}=12\)
\(\frac{y}{\frac{1}{3}}=24\Rightarrow y=24.\frac{1}{3}=8\)
\(\frac{z}{\frac{1}{4}}=24\Rightarrow z=24.\frac{1}{4}=6\)
Vậy số máy của đội thứ nhất, đội thứ 2 và đội thứ 3 lần lượt là \(12;8;6\)