K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 6 2017

Đáp án: D.

Tập xác định: D = R \ {m}

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Hàm số có cực trị khi và chỉ khi y' đổi dấu trên D

x 2  - 2mx + 2 m 2  - 5 = 0 có hai nghiệm phân biệt

⇔ ∆ ' = - m 2  + 5 > 0 ⇔ - 5  < m <  5

28 tháng 11 2017

Giải bài 6 trang 18 sgk Giải tích 12 | Để học tốt Toán 12

Ta có bảng biến thiên:

Giải bài 6 trang 18 sgk Giải tích 12 | Để học tốt Toán 12

Dựa vào BBT thấy hàm số đạt cực đại tại x = -m – 1.

Hàm số đạt cực đại tại x = 2 ⇔ -m – 1 = 2 ⇔ m = -3.

Vậy m = -3.

 

28 tháng 9 2018

Đáp án: C.

Tập xác định: D = R. y' = 3 x 2  - 6x + m.

Hàm số có cực trị khi và chỉ khi y' đổi dấu trên R

⇔ 3 x 2  - 6x + m = 0 có hai nghiệm phân biệt

⇔ ∆ ' = 9 - 3m > 0 ⇔ 3m < 9 ⇔ m < 3

1 tháng 11 2019

Đáp án: C.

Tập xác định: D = R. y' = 3 x 2  - 6x + m.

Hàm số có cực trị khi và chỉ khi y' đổi dấu trên R

⇔ 3 x 2  - 6x + m = 0 có hai nghiệm phân biệt

Δ' = 9 - 3m > 0 3m < 9 m < 3

2 tháng 5 2019

8 tháng 10 2019

TXĐ: D = R

y’ = 3 x 2  + 4mx + m

Hàm số có cực trị khi và chỉ khi y’ đổi dấu trên R.

⇔ 3 x 2  + 4mx + m có hai nghiệm phân biệt.

⇔ Δ’ = 4 m 2  -3m > 0 ⇔ m(4m – 3) > 0

⇔ Giải sách bài tập Toán 12 | Giải sbt Toán 12

Vậy hàm số đã cho có cực đại, cực tiểu khi m < 0 hoặc m > 3/4.

29 tháng 8 2019

TXĐ: D = R

y’ = 3 x 2  + 4mx + m

Hàm số có cực trị khi và chỉ khi y’ đổi dấu trên R.

⇔ 3 x 2  + 4mx + m có hai nghiệm phân biệt.

⇔ ∆ ’ = 4 m 2  -3m > 0 ⇔ m(4m – 3) > 0

⇔ Giải sách bài tập Toán 12 | Giải sbt Toán 12

Vậy hàm số đã cho có cực đại, cực tiểu khi m < 0 hoặc m > 3/4.

16 tháng 8 2018

Đáp án: D.

y' = 3 x 2  - 6(m - 1)x - 3(m + 1)

y' = 0 ⇔  x 2  - 2(m - 1)x - m - 1 = 0

Δ' = ( m - 1 ) 2  + m + 1 = m 2  - m + 2 ≥ 0

Tam thức m 2  - m + 2 luôn dương với mọi m ∈ R vì δ = 1 - 8 < 0 và a = 1 > 0 cho nên phương y' = 0 luôn có hai nghiệm phân biệt. Suy ra hàm số luôn có cực trị với mọi giá trị m ∈ R.

8 tháng 6 2017

Đáp án: D.

y' = 3 x 2 - 6(m - 1)x - 3(m + 1)

y' = 0 ⇔  x 2  - 2(m - 1)x - m - 1 = 0

∆ ' = m - 1 2  + m + 1 =  m 2 - m + 2 ≥ 0

Tam thức  m 2  - m + 2 luôn dương với mọi m R vì δ = 1 - 8 < 0 và a = 1 > 0 cho nên phương y' = 0 luôn có hai nghiệm phân biệt. Suy ra hàm số luôn có cực trị với mọi giá trị m ∈ R.

2 tháng 9 2018

Đáp án: B.

Hàm số đã cho có cực trị khi và chỉ khi

y' = 3 x 2  - 6(m - 1)x - 3(m + 3) = 0 có 2 nghiệm phân biệt

⇔ ∆ ' = m - 1 2  + (m + 3) =  m 2  - m + 4 > 0

Ta thấy tam thức  ∆ ' =  m 2  - m + 4 luôn dương với mọi m vì

δ = 1 - 16 = -15 < 0, a = 1 > 0

Vậy hàm số đã cho luôn có cực trị mới mọi m  ∈  R