Xác định giá trị của tham số m để hàm số có cực trị:
y = x 2 - 2 mx + 5 x - m
A. m > 5 B. m < - 5
C. m = 5 D. - 5 < m < 5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có bảng biến thiên:
Dựa vào BBT thấy hàm số đạt cực đại tại x = -m – 1.
Hàm số đạt cực đại tại x = 2 ⇔ -m – 1 = 2 ⇔ m = -3.
Vậy m = -3.
Đáp án: C.
Tập xác định: D = R. y' = 3 x 2 - 6x + m.
Hàm số có cực trị khi và chỉ khi y' đổi dấu trên R
⇔ 3 x 2 - 6x + m = 0 có hai nghiệm phân biệt
⇔ ∆ ' = 9 - 3m > 0 ⇔ 3m < 9 ⇔ m < 3
Đáp án: C.
Tập xác định: D = R. y' = 3 x 2 - 6x + m.
Hàm số có cực trị khi và chỉ khi y' đổi dấu trên R
⇔ 3 x 2 - 6x + m = 0 có hai nghiệm phân biệt
⇔ Δ' = 9 - 3m > 0 ⇔ 3m < 9 ⇔ m < 3
TXĐ: D = R
y’ = 3 x 2 + 4mx + m
Hàm số có cực trị khi và chỉ khi y’ đổi dấu trên R.
⇔ 3 x 2 + 4mx + m có hai nghiệm phân biệt.
⇔ Δ’ = 4 m 2 -3m > 0 ⇔ m(4m – 3) > 0
⇔
Vậy hàm số đã cho có cực đại, cực tiểu khi m < 0 hoặc m > 3/4.
TXĐ: D = R
y’ = 3 x 2 + 4mx + m
Hàm số có cực trị khi và chỉ khi y’ đổi dấu trên R.
⇔ 3 x 2 + 4mx + m có hai nghiệm phân biệt.
⇔ ∆ ’ = 4 m 2 -3m > 0 ⇔ m(4m – 3) > 0
⇔
Vậy hàm số đã cho có cực đại, cực tiểu khi m < 0 hoặc m > 3/4.
Đáp án: D.
y' = 3 x 2 - 6(m - 1)x - 3(m + 1)
y' = 0 ⇔ x 2 - 2(m - 1)x - m - 1 = 0
Δ' = ( m - 1 ) 2 + m + 1 = m 2 - m + 2 ≥ 0
Tam thức m 2 - m + 2 luôn dương với mọi m ∈ R vì δ = 1 - 8 < 0 và a = 1 > 0 cho nên phương y' = 0 luôn có hai nghiệm phân biệt. Suy ra hàm số luôn có cực trị với mọi giá trị m ∈ R.
Đáp án: D.
y' = 3 x 2 - 6(m - 1)x - 3(m + 1)
y' = 0 ⇔ x 2 - 2(m - 1)x - m - 1 = 0
∆ ' = m - 1 2 + m + 1 = m 2 - m + 2 ≥ 0
Tam thức m 2 - m + 2 luôn dương với mọi m ∈ R vì δ = 1 - 8 < 0 và a = 1 > 0 cho nên phương y' = 0 luôn có hai nghiệm phân biệt. Suy ra hàm số luôn có cực trị với mọi giá trị m ∈ R.
Đáp án: B.
Hàm số đã cho có cực trị khi và chỉ khi
y' = 3 x 2 - 6(m - 1)x - 3(m + 3) = 0 có 2 nghiệm phân biệt
⇔ ∆ ' = m - 1 2 + (m + 3) = m 2 - m + 4 > 0
Ta thấy tam thức ∆ ' = m 2 - m + 4 luôn dương với mọi m vì
δ = 1 - 16 = -15 < 0, a = 1 > 0
Vậy hàm số đã cho luôn có cực trị mới mọi m ∈ R
Đáp án: D.
Tập xác định: D = R \ {m}
Hàm số có cực trị khi và chỉ khi y' đổi dấu trên D
⇔ x 2 - 2mx + 2 m 2 - 5 = 0 có hai nghiệm phân biệt
⇔ ∆ ' = - m 2 + 5 > 0 ⇔ - 5 < m < 5