K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 7 2018

Chọn A

Xét hàm số y = x 3 + 3 x 2 - 9 x + 1  trên đoạn [-4;4].

Ta có:

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

y(1) = -4, y(-3) = 28; y(4) = 77; y(-4) = 21

GTNN của hàm số y = x 3 - 9 x + 1  trên đoạn [-4;4] là -4 khi x= 1

22 tháng 11 2021

\(a,\dfrac{x^2+x+2}{\sqrt{x^2+x+1}}=\dfrac{x^2+x+1+1}{\sqrt{x^2+x+1}}=\sqrt{x^2+x+1}+\dfrac{1}{\sqrt{x^2+x+1}}\left(1\right)\)

Áp dụng BĐT cosi: \(\left(1\right)\ge2\sqrt{\sqrt{x^2+x+1}\cdot\dfrac{1}{\sqrt{x^2+x+1}}}=2\)

Dấu \("="\Leftrightarrow x^2+x+1=1\Leftrightarrow x^2+x=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-1\end{matrix}\right.\)

13 tháng 1 2021

Đặt \(\sqrt[3]{x^2+1}=t\left(t\ge1\right)\)

\(y=f\left(t\right)=t^2-t+1\)

\(minf\left(t\right)=f\left(1\right)=1\)

\(minf\left(t\right)=1\Leftrightarrow t=1\Leftrightarrow\sqrt[3]{x^2+1}=1\Leftrightarrow x=0\)

19 tháng 2 2019

* Hàm số đã cho liên tục trên R vì với Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12 nên (1) đúng

* Tại điểm x = 0 hàm số không có đạo hàm nên (2) sai.

* y = x 2 - 2 | x | + 2 = | x | 2 - 2 | x | + 2 = ( | x | - 1 ) 2 + 1 ≥ 1 ∀ x

Suy ra, GTNN của hàm số là 1 khi |x| = 1 ⇔ x = ±1

nên hàm số không có GTLN.

* Phương trình x 2 - 2 | x | + 2 = 0  vô nghiệm nên đồ thị không cắt trục hoành.

f ( - x ) = ( - x ) 2 - 2 | - x | + 2 = x 2 - 2 | x | + 2 = f ( x )

Nên hàm số đã cho là hàm số chẵn.

Mệnh đề 1, 5 đúng. Mệnh đề 2, 3,4,6 sai.

Chọn B

15 tháng 9 2023

1) \(f\left(x\right)=2x-5\)

\(f'\left(x\right)=2\)

\(\Rightarrow f'\left(4\right)=2\)

2) \(y=x^2-3\sqrt[]{x}+\dfrac{1}{x}\)

\(\Rightarrow y'=2x-\dfrac{3}{2\sqrt[]{x}}-\dfrac{1}{x^2}\)

3) \(f\left(x\right)=\dfrac{x+9}{x+3}+4\sqrt[]{x}\)

\(\Rightarrow f'\left(x\right)=\dfrac{1.\left(x+3\right)-1.\left(x+9\right)}{\left(x-3\right)^2}+\dfrac{4}{2\sqrt[]{x}}\)

\(\Rightarrow f'\left(x\right)=\dfrac{x+3-x-9}{\left(x-3\right)^2}+\dfrac{2}{\sqrt[]{x}}\)

\(\Rightarrow f'\left(x\right)=\dfrac{12}{\left(x-3\right)^2}+\dfrac{2}{\sqrt[]{x}}\)

\(\Rightarrow f'\left(x\right)=2\left[\dfrac{6}{\left(x-3\right)^2}+\dfrac{1}{\sqrt[]{x}}\right]\)

\(\Rightarrow f'\left(1\right)=2\left[\dfrac{6}{\left(1-3\right)^2}+\dfrac{1}{\sqrt[]{1}}\right]=2\left(\dfrac{3}{2}+1\right)=2.\dfrac{5}{2}=5\)

loading...  loading...  

27 tháng 12 2019

Chọn D

Từ đồ thị của hàm số y = f'(x) ta suy ra bảng biến thiên của hàm số y = f(x) trên đoạn như sau:

Từ bảng biến thiên, ta có nhận xét sau: 

Ta lại có: f(0) + f(1) - 2f(2) = f(4). - f(3)

17 tháng 9 2023

1) \(y=x^2-3\sqrt[]{x}+\dfrac{1}{x}\)

\(\Rightarrow y=2x-\dfrac{3}{2\sqrt[]{x}}-\dfrac{1}{x^2}\)

2) \(f\left(x\right)=\dfrac{x+9}{x+3}+4\sqrt[]{x}\)

\(\Rightarrow f'\left(x\right)=\dfrac{1.\left(x+3\right)-1\left(x+9\right)}{\left(x+3\right)^2}+\dfrac{2}{\sqrt[]{x}}\)

\(\Rightarrow f'\left(x\right)=\dfrac{x+3-x-9}{\left(x+3\right)^2}+\dfrac{2}{\sqrt[]{x}}\)

\(\Rightarrow f'\left(x\right)=\dfrac{-6}{\left(x+3\right)^2}+\dfrac{2}{\sqrt[]{x}}\)

\(\Rightarrow f'\left(1\right)=\dfrac{-6}{\left(1+3\right)^2}+\dfrac{2}{\sqrt[]{1}}=-\dfrac{3}{8}+2=\dfrac{13}{8}\)

21 tháng 8 2018

Ta có 

Bảng biến thiên của hàm số y= g( x)

Dựa vào bảng biến thiên ta thấy hàm số đồng biến trên khoảng ( 3: + ∞)  hàm số nghịch biến trong khoảng (-∞; -3) .

Hàm số có 3 cực trị, hàm số đạt giá trị nhỏ nhất tại x= ±3

Vậy có 3 khẳng định đúng là khẳng định I, II, IV

Chọn C.