Cho hình chóp S. ABCD có đáy ABCD là hình thang vuông tại A và B, A B = B C = 1 2 A D = 2 a . Tam giác SAB đều và nằm trong mặt phẳng vuông góc với đáy. Thể tích khối chóp S.ACD.
A. 4 a 3 3 3
B. a 3 3 2
C. a 3 2 6
D. a 3 3 6
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có tam giác ACD vuông cân tại C và CA = CD = 2a
⇒ S A A C D = 4 a 2 . Gọi H là trung điểm của AB
Vì tam giác SAB đều và nằm trong mặt phẳng vuông góc với đáy
⇒
S
H
⊥
A
B
C
D
;
S
H
=
a
3
.
V
a
y
S
S
A
C
D
=
4
a
3
3
3
Đáp án cần chọn là A
Đáp án A
Ta có tam giác ACD vuông cân tại C và C A = C D = 2 a 2
⇒ S ∆ A C D = 4 a 2 . Gọi H là trung điểm của AB
Vì tam giác SAB đều và nằm trong mặt phẳng vuông góc với đáy
⇒ S H ⊥ ( A B C D ) ; S H = a 3 .
Vậy S S . A C D = 4 a 3 3 3 .
Đáp án là A
Gọi H là trung điểm của A B . Gọi K là hình chiếu vuông góc của H lên S B .
Khi đó, C K H ^ là góc giữa hai mp
Ta có: S H = 2 a 3 2 = a 3 ; S B = 2 a ; H B = a ⇒ H K = a 3 2 ; C K = a 7 2 .
Vậy cos C K H ^ = 3 7