Tìm các bội chung thông qua tìm BCNN của 7; 9 và 6.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`8)`
`a)` `->` ta được BCNN `(7;9;6)=126`
`->` từ đó ta có được BC `(7;9;6)={0;126;252;...}`
`b)` `->` ta được BCNN `(8;12;15)=120`
`->` từ đó ta được BC `(8;12;15)={0;120;240;...}`
`9)`
`a)->` BCNN `(15;18)=90`
`e)->` BCNN`(33;44;55)=660`
`b)->` BCNN`(8;18;30)=360`
`f)->` BCNN`(10;12)=60`
`c)->` BCNN `(4;14;26)=364`
`g)->` BCNN `(24;10)=210`
`d)->` BCNN `(6;8;10)=120`
2 bài này khá dài khi giải ra nên mik chỉ giảng cách tính thôi:
Bước 1: Phân tích từng số ra tích các thừa số nguyên tố.
Bước 2: Tìm BCNN bằng cách nhân các thừa số nguyên tố với nhau với số mũ lớn nhất (nếu có chung)
Ta tìm được BCNN (8; 12; 15) = 120. Từ đó ta có:
BC (8; 12; 15) = {0; 120; 240;... }
BCNN của 8 và 10 là:
8=2^3
10=2.5
BCNN(8;10)=2^3.5=40
Vậy BC (8;10)={0;40;80;120;169;...}
Ta tìm được BCNN (8; 12; 15) = 120. Từ đó ta có:
BC (8; 12; 15) = {0; 120; 240;... }
Ta tìm được BCNN (8; 12; 15) = 120. Từ đó ta có:
BC (8; 12; 15) = {0; 120; 240;... }
1)a chia hết cho b thì b là ước của a
a chia hết cho b thì b là bội của a.
2)Ta có thể tìm các bội của một số khác 0 bằng cách nhân số đó lần lược cho 1, 2, 3, …
3)Ta có thể tìm các ước của một số a (a > 1) bằng cách lần lược chia số a cho số tự nhiên từ 1 đến a để xét xem a chia hết cho những số nào, khi đó các số ấy là ước của a.
4)Số nguyên tố là số tự nhiên lớn hơn 1, chỉ có hai ước là 1 và chính nó.
5)Ước chung của hai hay nhiều số là ước của tất cả các số đó.
6) Bước 1: Phân tích mỗi số ra thừa số nguyên tố.
- Bước 2: Chọn ra các thừa số nguyên tố chung.
- Bước 3: Lập tích các thừa số đã chọn, mỗi thừa số lấy với số mũ nhỏ nhất của nó. Tích đó là ƯCLN phải tìm.
7)ƯCLN của hai hay nhiều số là số lơn nhất trong tập hợp ước chung
9)Bội chung của hai hay nhiều số là bội của tất cả các số đó.
10
1)a chia hết cho b thì b là ước của a
a chia hết cho b thì b là bội của a.
2)Ta có thể tìm các bội của một số khác 0 bằng cách nhân số đó lần lược cho 1, 2, 3, …
3)Ta có thể tìm các ước của một số a (a > 1) bằng cách lần lược chia số a cho số tự nhiên từ 1 đến a để xét xem a chia hết cho những số nào, khi đó các số ấy là ước của a.
4)Số nguyên tố là số tự nhiên lớn hơn 1, chỉ có hai ước là 1 và chính nó.
5)Ước chung của hai hay nhiều số là ước của tất cả các số đó.
6) Bước 1: Phân tích mỗi số ra thừa số nguyên tố.
- Bước 2: Chọn ra các thừa số nguyên tố chung.
- Bước 3: Lập tích các thừa số đã chọn, mỗi thừa số lấy với số mũ nhỏ nhất của nó. Tích đó là ƯCLN phải tìm.
7)ƯCLN của hai hay nhiều số là số lơn nhất trong tập hợp ước chung
9)Bội chung của hai hay nhiều số là bội của tất cả các số đó.
10
2 ) ucln của 56 và 140
56 = 23 . 7
140 = 7 . 5 . 22
vậy ucln của 56 và 140 là 28
Bội chung nhỏ nhất của 2 số đó : 280
Tích của 2 số đó : 56 . 140 = 7840
Tích của ucln và bcnn của 2 số đó : 7840
Vậy bcnn < tích của 2 số
ucln . bcnn = tích của 2 số
3 / a ) 17 và 27
Vì hai số đã cho là từng cặp số nguyên tố nên BCNN của 2 số đó : 17 . 27 = 459
Đây là bội chung nhỏ nhất , muốn tìm các bội chung khác, ta nhân số này với 2 ; 3 ; 4 ; 5 ; 6 ....
b ) 45 = 32 . 5
48 = 3 . 24
BCNN của 2 số trên là 720
Tương tự a và b , ta làm được câu c
a) A = {0; 48; 96; 144, 192;...}
* Nhận xét: Tập hợp BC(12, 16) chính là tập hợp A.
b)
i. 24 = 23.3; 30 = 2.3.5
=> BCNN(24,30) = 23. 3.5= 120
=> BC(24, 30) = B(120) = {0; 120; 240; 360;...}
ii. 42 = 2.3.7; 60 = 22.3.5
=> BCNN(42, 60) = 420
=> BC(42, 60) = B(420) = {0; 420, 840; 1260;…}.
iii. 60 = 22.3.5
150 = 2.3.52
=> BCNN(60, 150) = 22.3.52 = 300
=> BC(60, 150) = B(300) = {0; 300, 600, 900, 1200;...}.
iv. 28 = 22.7; 35 = 5.7
=> BCNN(28, 35) = 22.5.7 = 140
=> BC(28, 35) = B(140) = {0; 140; 280; 420, 560;...}.
Ta tìm được BCNN (7; 9; 6) = 126.
Từ đó ta có BC (7; 9; 6) = {0;126; 252; 378;...}.