K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 3 2015

Ta có \(\frac{6n+5}{2n-1}=\frac{3.\left(2n-1\right)+8}{2n-1}=3+\frac{8}{2n-1}\)

Vì 3 là số nguyên => \(\frac{8}{2n-1}\)cũng là số nguyên

=> 2n-1 là ước của 8 rồi sau đó bạn tìm n

6 tháng 7 2016

\(A=\frac{3n-9}{n-4}=\frac{3n-12+3}{n-4}=\frac{3\left(n-4\right)+3}{n-4}=\frac{3\left(n-4\right)}{n-4}+\frac{3}{n-4}=3+\frac{3}{n-4}\)

Để p/s A có giá trị nguyên thì 3 chia hết cho n+4

=>n+4 E Ư(3)={-3;-1;1;3}

=>n E {-7;-5;-3;-1}

Vậy........

\(B=\frac{6n+5}{2n-1}=\frac{6n-3+8}{2n-1}=\frac{3.\left(2n-1\right)+8}{2n-1}=\frac{3.\left(2n-1\right)}{2n-1}+\frac{8}{2n-1}=3+\frac{8}{2n-1}\)

Để B là số nguyên thì 8 chia hết cho 2n-1

Tới đây tương tự câu trên nhé

6 tháng 7 2016

Để A nguyên thì 3n - 9 chia hết n - 4

<=>  (3n - 12) + 3 chia hết n - 4

=>    3.(n - 4) + 3 chia hết n - 4

=>       3 chia hết n - 4

=>        n - 4 thuộc Ư(3)

=>       Ư(3) = {-1;1;-3;3}
Ta có: 

n - 4-11-33
n3517
6 tháng 7 2016

a, Ta có: \(\frac{3n+9}{n-4}\in Z\Leftrightarrow\frac{3n-12+21}{n-4}\in Z\Leftrightarrow\frac{3\left(n-4\right)}{n-4}+\frac{21}{n-4}\in Z\Leftrightarrow3+\frac{21}{n-4}\in Z\)

\(\Leftrightarrow\frac{21}{n-4}\in Z\Leftrightarrow n-4\inƯ21\Leftrightarrow n-4\in\left\{\pm1;\pm3;\pm7;\pm21;\right\}\)

\(\Leftrightarrow n\in\left\{-17;-3;1;3;4;7;11;25\right\}\)

b, Ta có: \(\frac{6n+5}{2n-1}\in Z\Leftrightarrow\frac{6n-3+8}{2n-1}\in Z\Leftrightarrow\frac{3\left(2n-1\right)}{2n-1}+\frac{8}{2n-1}\in Z\Leftrightarrow3+\frac{8}{2n-1}\in Z\Leftrightarrow\frac{8}{2n-1}\in Z\)

\(\Leftrightarrow2n-1\inƯ8\Leftrightarrow2n-1\in\left\{\pm1;\pm2;\pm4;\pm8\right\}\)

\(\Leftrightarrow n\in\left\{1;0\right\}\)  Vì \(n\in Z\)

13 tháng 11 2016

Đặt tính ra ta có: \(\left(3n+9\right):\left(n-4\right)=3\) dư 21

\(\Rightarrow A=Q+\frac{R}{B}=3+\frac{21}{n-4}\)

\(\Rightarrow n-4\in U\left(21\right)=\left\{\pm1;\pm3;\pm7;\pm21\right\}\)

Ta có bảng sau:

n-41-13-37-721-21
n537111-325-17

Vậy......

b) Ta tính được: \(\left(6n+5\right):\left(2n-1\right)=3\) dư 8

\(\Rightarrow A=Q+\frac{R}{B}=3+\frac{8}{2n-1}\)

\(\Rightarrow2n-1\in U\left(8\right)=\left\{\pm1;\pm2;\pm4;\pm8\right\}\)

Ta có bảng sau:

2n-11-12-24-48-8
n101.5 (loại)-0.5 (loại)2.5 (loại)-1.5 (loại)4.5 (loại)-3.5 (loại)

Vậy \(x\in\left\{0;1\right\}\)

14 tháng 8 2021

Để B đạt GTLN thì \(\dfrac{8}{2n-1}\)đạt GTLN

⇒2n-1 là số nguyên dương nhỏ nhất

⇒2n-1=1

⇒2n=2

⇒n=1

30 tháng 9 2015

De \(\frac{6n+5}{2n-1}\)\(\in Z\)

=> 6n+5 chia het cho 2n-1

=> 6n-3+8 chia het cho 2n-1

=> 3(2n-1)+8 chia het cho 2n-1

=> 8 chia het cho 2n-1

=> 2n-1=-1;1;-2;2;-4;4;-8;8

Vi 2n-1 la so le

=> 2n-1=-1;1

=> 2n=0;2

=> n=0;1

6 tháng 6 2015

\(\frac{6n+5}{2n+1}=\frac{6n+3+2}{2n+1}=3+\frac{2}{2n+1}\)

Số hữu tỉ \(\frac{6n+5}{2n+1}\) nguyên \(\Leftrightarrow\) \(\frac{2}{2n+1}\) nguyên

\(\Leftrightarrow2n+1\inƯ\left(2\right)\)

\(\Leftrightarrow2n+1\in\left\{-2;-1;1;2\right\}\)

\(\Leftrightarrow2n\in\left\{-3;-2;0;1\right\}\)

\(\Leftrightarrow n\in\left\{-1;0\right\}\)

3 tháng 7 2017

6n+52n+1 =6n+3+22n+1 =3+22n+1 

Số hữu tỉ 6n+52n+1  nguyên  22n+1  nguyên

⇔2n+1∈Ư(2)

⇔2n+1∈{−2;−1;1;2}

⇔2n∈{−3;−2;0;1}

⇔n∈{−1;0}

22 tháng 8 2021

a)B=3(n+1)/n+1 - 3/n+1

      =3 - 3/n+1

để B nguyên thì n+1 thuộc ước của 3 (1;3)

suy ra n =(0;2)

câu b tương tự

22 tháng 8 2021

undefinedcj ko rõ đề câu a lắm e ghi lại nhé

 

a: Để A là số nguyên thì n-21 chia hết cho n+10

=>n+10-31 chia hết cho n+10

=>n+10 thuộc {1;-1;31;-31}

=>n thuộc {-9;-11;21;-41}

b: Để B là số nguyên thì 3n+9 chia hết cho n-4

=>3n-12+21 chia hết cho n-4

=>n-4 thuộc {1;-1;3;-3;7;-7;21;-21}

=>n thuộc {5;3;7;1;11;-3;25;-17}

c: C nguyên

=>6n+5 chia hết cho 2n-1

=>6n-3+8 chia hết cho 2n-1

=>2n-1 thuộc {1;-1;2;-2;4;-4;8;-8}

mà n nguyên

nên 2n-1 thuộc {1;-1}

=>n thuộc {1;0}