K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 4 2019

Đáp án A

Dễ dàng tính được các cạnh của tứ diện CA′B′C′:

A ' C = A ' C ' = CC ' = B ' C ' = A ' B ' = a .

18 tháng 5 2019

Đáp án A

Dễ dàng tính được các cạnh của tứ diện CA’B’C’:

18 tháng 7 2017

Chọn A

Dễ dàng tính được các cạnh của tứ diện CA’B’C’:

3 tháng 8 2017

Chọn C.

Gọi H là trọng tâm của tam giác ABC. Khi đó chiều cao của lăng trụ bằng A'H = AH.tan60 °

NV
30 tháng 6 2021

Do A' cách đều A; B; C \(\Rightarrow\) hình chiếu vuông góc H của A' lên (ABC) trùng tâm của tam giác ABC

\(\Rightarrow\widehat{A'AH}=60^0\)

\(AH=\dfrac{2}{3}.\dfrac{a\sqrt{3}}{2}=\dfrac{a\sqrt{3}}{3}\Rightarrow AA'=\dfrac{AH}{cos60^0}=\dfrac{2a\sqrt{3}}{3}=BB'=CC'=A'B=A'C\) (do A' cách đều A, B, C nên \(A'A=A'B=A'C\))

Ta có: \(\left\{{}\begin{matrix}A'H\perp\left(ABC\right)\Rightarrow A'H\perp BC\\AH\perp BC\end{matrix}\right.\)  \(\Rightarrow BC\perp\left(A'AH\right)\Rightarrow BC\perp AA'\)

\(\Rightarrow BC\perp BB'\Rightarrow B'C'CB\) là hình chữ nhật (hình bình hành có 1 góc vuông)

\(S_{BCC'B'}=BB'.BC=\dfrac{2a^2\sqrt{3}}{3}\)

Gọi M là trung điểm AB \(\Rightarrow A'M=\sqrt{A'A^2-\left(\dfrac{AB}{2}\right)^2}=\dfrac{a\sqrt[]{39}}{6}\)

\(S_{A'AB}=\dfrac{1}{2}A'M.AB=\dfrac{a^2\sqrt{39}}{12}\)

\(\Rightarrow S_{xq}=S_{BCC'B'}+4S_{A'AB}=...\)

14 tháng 2 2017

Đáp án là B



5 tháng 7 2018

Đáp án A

S t p = S x q + 2 S d , trong đó S t p  là diện tích toàn phần, S d  là diện tích đáy, S x q  là diện tích xung quanh hình lăng trụ tứ giác đều.

S t p = 4. a . b + 2 a 2 = 2 a 2 + 4 a b .

31 tháng 8 2017

Chọn đáp án D.

Ta có A'A = A'B = A'C nên hình chiếu của A' là tâm đường tròn ngoại tiếp tam giác ABC.

Do tam giác ABC đều nên trọng tâm G là tâm đường tròn ngoại tiếp tam giác ABC.

AG là hình chiếu của A'A lên mặt phẳng (ABC)

Góc giữa A'A  với mặt phẳng (ABC) là:  A ' A G ^

Gọi H là trung điểm BC.

Ta có: 

 

Xét tam giác A'AG vuông tại G:

Diện tích tam giác đều ABC là:

Thể tích khối lăng trụ ABC.A'B'C' là: 

21 tháng 8 2019

19 tháng 10 2017

Đáp án là C

Gọi G là trọng tâm của tam giác ABC. 

Do tam giác ABC đều cạnh a nên 

Diện tích tam giác ABC bằng  a 3 3 4

Do đỉnh A’ cách đều ba đỉnh A, B, C nên A'G ⊥ (ABC) => A'G là đường cao của khối lăng trụ. 

Theo giả thiết, ta có  A ' A G ^   =   45 0 => ∆ A'GA vuông cân. Tù đó suy ra 

Vậy thể tích của khối lăng trụ bằng