Cho tam giác ABC vuông tại A có gốc B = 30o, BC = 18cm. Tính AC?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1: \(BC=\sqrt{18^2+24^2}=30\left(cm\right)\)
2: Xét ΔABC vuông tại A và ΔIEC vuông tại I có
góc C chung
=>ΔABC đồng dạng với ΔIEC
b:
IC=BC/2=15cm
ΔABC đồng dạng với ΔIEC
=>AB/IE=BC/EC=AC/IC
=>18/IE=30/EC=24/15=8/5
=>IE=11,25cm; EC=18,75cm
1: \(BC=\sqrt{18^2+24^2}=30\left(cm\right)\)
2: Xét ΔABC vuông tại A và ΔIEC vuông tại I có
góc C chung
=>ΔABC đồng dạng với ΔIEC
b:
IC=BC/2=15cm
ΔABC đồng dạng với ΔIEC
=>AB/IE=BC/EC=AC/IC
=>18/IE=30/EC=24/15=8/5
=>IE=11,25cm; EC=18,75cm
a, \(AB=\sqrt{BC^2-AC^2}=24\left(cm\right)\left(pytago\right)\)
\(\sin B=\dfrac{AC}{BC}=\dfrac{3}{5}\approx\sin37^0\\ \Rightarrow\widehat{B}\approx37^0\\ \Rightarrow\widehat{C}=90^0-\widehat{B}\approx53^0\)
b, Áp dụng HTL: \(\left\{{}\begin{matrix}BH=\dfrac{AB^2}{BC}=19,2\left(cm\right)\\CH=\dfrac{AC^2}{BC}=10,8\left(cm\right)\\AH=\sqrt{BH\cdot CH}=14,4\left(cm\right)\end{matrix}\right.\)
+) Tam giác ABC vuông tại A nên: ∠B + ∠C = 90º
Mà ∠B = 30º ⇒ ∠C = 60º
+) Lấy điểm D trên cạnh BC sao cho ∠CAD = 60º
Tam giác ACD có ∠C = ∠CAD = 60º nên ACD là tam giác đều.
Suy ra AC = AD = DC và ∠DAC = 60º (1)
+) Ta có: ∠DAC + ∠DAB = ∠BAC = 90º
⇒ ∠DAB = 90º - 60º = 30º
+) Tam giác ABD có ∠DAB = ∠B = 30º nên ABD là tam giác cân.
Suy ra AD = BD. (2)
Từ (1) và (2) suy ra AC = DC = BD, tức là AC = BC/2
a: Xét ΔABC có AD là phân giác
nên DB/AB=DC/AC
=>DB/DC=AB/AC=2/3
=>3DB-2DC=0
mà DB+DC=18
nên DB=7,2cm; DC=10,8cm
b: Xét ΔBDH vuông tại H và ΔCDK vuông tại K có
góc BDH=góc CDK
=>ΔBDH đồng dạng với ΔCDK
=>BH/CK=BD/CD=2/3
a) Ta có: \(\dfrac{AB}{BC}=\dfrac{4}{5}\)
nên \(AB=\dfrac{4}{5}BC\)
Xét ΔABC vuông tại A có
\(AB^2+AC^2=BC^2\)
\(\Leftrightarrow BC=30\left(cm\right)\)
\(\Leftrightarrow AB=\dfrac{4}{5}\cdot BC=\dfrac{4}{5}\cdot30=24\left(cm\right)\)
Xét ΔABC có BD là đường phân giác ứng với cạnh AC(gt)
nên \(\dfrac{AD}{AB}=\dfrac{CD}{BC}\)
hay \(\dfrac{AD}{24}=\dfrac{CD}{30}\)
mà AD+CD=AC=18cm(gt)
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{AD}{24}=\dfrac{CD}{30}=\dfrac{AD+CD}{24+30}=\dfrac{18}{54}=\dfrac{1}{3}\)
Do đó:
\(\left\{{}\begin{matrix}AD=\dfrac{1}{3}\cdot24=8\left(cm\right)\\CD=\dfrac{1}{3}\cdot30=10\left(cm\right)\end{matrix}\right.\)
Vậy: AD=8cm; CD=10cm
b) Xét ΔHAC vuông tại A và ΔHEB vuông tại E có
\(\widehat{AHC}=\widehat{EHB}\)(hai góc đối đỉnh)
Do đó: ΔHAC\(\sim\)ΔHEB(g-g)
c) Xét ΔAFB vuông tại A và ΔAHC vuông tại A có
\(\widehat{ABF}=\widehat{ACH}\left(=90^0-\widehat{AFB}\right)\)
Do đó: ΔAFB\(\sim\)ΔAHC(g-g)
Suy ra: \(\dfrac{AF}{AH}=\dfrac{AB}{AC}\)(Các cặp cạnh tương ứng tỉ lệ)
hay \(AF\cdot AC=AB\cdot AH=AB\cdot\dfrac{1}{3}AB=\dfrac{1}{3}AB^2\)(đpcm)
\(AC=\sin B\cdot BC=\dfrac{1}{2}\cdot18=9\left(cm\right)\)