Chứng Minh Rằng các số sau nguyên tố cùng nhau
a,2n+3 và 4n+8
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
tớ chỉ làm cho cậu 1 cái thôi, còn lại cậu tự giải tương tự
Đặt d= ƯCLN (2n+1, 2n+3)
\(\Rightarrow2n+1⋮d\) và\(3n+2⋮d\)
=>\(3\left(2n+1\right)⋮d\) và\(2\left(3n+2\right)⋮d\)
\(\Rightarrow6n+3⋮d\) và\(6n+4⋮d\)
=>6n+4 - (6n+3) \(⋮d\)
=>\(1⋮d\)
=>d=1
Vậy cặp số trên nguyên tố cùng nhau với mọi STN n
Gọi d > 0 là ước số chung của 7n+10 và 5n+7
=> d là ước số của 5.(7n+10) = 35n +50
và d là ước số của 7(5n+7)= 35n +49
mà (35n + 50) -(35n +49) =1
=> d là ước số của 1 => d = 1
Vậy _________________
Gọi d > 0 là ước số chung của 2n+3 và 4n + 8
=> d là ước số của 2(2n + 3) = 4n + 6
(4n + 8) - (4n + 6) = 2
=> d là ước số của 2 => d=1,2
d = 2 không là ước số của số lẻ 2n+3 => d = 1
Vậy __________________
a: Gọi a là UCLN(3n+1;6n+3)
\(\Leftrightarrow\left\{{}\begin{matrix}6n+3⋮a\\6n+2⋮a\end{matrix}\right.\Leftrightarrow1⋮a\Leftrightarrow a=1\)
Vậy: 3n+1 và 6n+3 là hai số nguyên tố cùng nhau
b: Gọi a là UCLN(2n+1;6n+5)
\(\Leftrightarrow\left\{{}\begin{matrix}6n+5⋮a\\6n+3⋮a\end{matrix}\right.\Leftrightarrow2⋮a\)
mà 2n+1 là số lẻ
nên a=1
Vậy: 2n+1 và 6n+5 là hai số nguyên tố cùng nhau
Bài giải
a: Gọi a là UCLN(3n+1;6n+3)
⇔⎧⎨⎩6n+3⋮a6n+2⋮a⇔1⋮a⇔a=1⇔{6n+3⋮a6n+2⋮a⇔1⋮a⇔a=1
Vậy: 3n+1 và 6n+3 là hai số nguyên tố cùng nhau
b: Gọi a là UCLN(2n+1;6n+5)
⇔⎧⎨⎩6n+5⋮a6n+3⋮a⇔2⋮a⇔{6n+5⋮a6n+3⋮a⇔2⋮a
mà 2n+1 là số lẻ
nên a=1
Vậy: 2n+1 và 6n+5 là hai số nguyên tố cùng nhau
Lời giải:
a. Gọi $d$ là ƯCLN $(n+2, n+3)$
$\Rightarrow n+2\vdots d, n+3\vdots d$
$\Rightarrow (n+3)-(n+2)\vdots d$ hay $1\vdots d$
$\Rightarrow d=1$
Vậy $ƯCLN(n+2, n+3)=1$ hay $n+2, n+3$ nguyên tố cùng nhau.
b.
Gọi $d$ là ƯCLN $(2n+3, 3n+5)$
$\Rightarrow 2n+3\vdots d$ và $3b+5\vdots d$
$\Rightarrow 2(3n+5)-3(2n+3)\vdots d$
$\Rightarrow 1\vdots d\Rightarrow d=1$
Vậy $(2n+3,3n+5)=1$ nên 2 số này nguyên tố cùng nhau.
Gọi d là ƯCLN(4n + 5; 2n + 2)
⇒ (4n + 5) ⋮ d
(2n + 2) ⋮ d ⇒ 2(2n + 2) ⋮ d ⇒ (4n + 4) ⋮ d
⇒ [(4n + 5) - (4n + 4)] ⋮ d
⇒ (4n + 5 - 4n - 4) ⋮ d
⇒ 1 ⋮ d
⇒ d = 1
Vậy 4n + 5 và 2n + 2 là hai số nguyên tố cùng nhau
Gọi ước chung lớn nhất của 4n + 5 và 2n + 2 là: d
Ta có: 4n + 5 ⋮ d
2n + 2 ⋮ d
⇒ 2.(2n+ 2) ⋮ d ⇒ 4n + 4 ⋮ d
⇒ 4n + 5 - (4n + 4) ⋮ d
4n + 5 - 4n - 4 ⋮ d
1 ⋮ d ⇒ d = 1
Ước chung lớn nhất của 4n + 5 và 2n + 2 là 1
Hay 4n + 5 và 2n + 2 là hai số nguyên tố cùng nhau
Goi d là ƯCLN ( 2n + 3 ; 4n + 8 )
\(\Rightarrow\) 2n + 3 và 4n + 8 chia hết cho d
\(\Rightarrow\) 2 . ( 2n + 3 ) chia hết cho d
1 . ( 4n + 8 ) chia hết cho d
\(\Rightarrow\) 4n + 6 chia hết cho d
4n + 8 chia hết cho d
\(\Rightarrow\) 4n + 8 - ( 4n + 6 ) chia hết cho d
4n + 8 - ( 4n - 6 ) chia hết cho d
Suy ra 2 chia hết cho d .
d € Ư ( 2 ) = { 1 ; 2 }
Mà 2n + 3 không chia hết cho 2 . Suy ra d = 1
\(\Rightarrow\) ƯCLN ( 2n + 3 ; 3n + 4 ) = 1
Vậy 2n + 3 và 3n + 4 là 2 số nguyên tố cùng nhau .
4n+8=2(2n+4)
2n+3,2n+4 ng tố cùng nhau 2 stn liên tiếp
k mình nha
Gọi UCLN(2n + 3; 4n + 8) là d
=> 2n + 3 chia hết cho d => 4n + 6 chia hết cho d
4n + 8chia hết cho d => 4n + 6 + 2 chia hét cho d
=> 2 chia hết cho d
=> d thuộc {1; 2}
Mà 2n + 3 lẻ => d lẻ => d = 1
=> UCLN(2n + 3; 4n + 8) = 1
Vậy...