K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 1 2016

Gọi UCLN(2n + 3; 4n + 8) là d

=> 2n + 3 chia hết cho d => 4n + 6 chia hết cho d

     4n + 8chia hết cho d => 4n + 6 + 2 chia hét cho d

=> 2 chia hết cho d

=> d thuộc {1; 2}

Mà 2n + 3 lẻ => d lẻ => d = 1

=> UCLN(2n + 3; 4n + 8) = 1

Vậy...

7 tháng 2 2017

tớ chỉ làm cho cậu 1 cái thôi, còn lại cậu tự giải tương tự

Đặt d= ƯCLN (2n+1, 2n+3)

\(\Rightarrow2n+1⋮d\)\(3n+2⋮d\)

=>\(3\left(2n+1\right)⋮d\)\(2\left(3n+2\right)⋮d\)

\(\Rightarrow6n+3⋮d\)\(6n+4⋮d\)

=>6n+4 - (6n+3) \(⋮d\)

=>\(1⋮d\)

=>d=1

Vậy cặp số trên nguyên tố cùng nhau với mọi STN n

3 tháng 11 2017

2n+3 .Bạn làm 3n+2 rồi

28 tháng 7 2015

Gọi d > 0 là ước số chung của 7n+10 và 5n+7

=> d là ước số của 5.(7n+10) = 35n +50

và d là ước số của 7(5n+7)= 35n +49

mà (35n + 50) -(35n +49) =1

=> d là ước số của 1 => d = 1

Vậy _________________

    

 

 

Gọi d > 0 là ước số chung của 2n+3 và 4n + 8

=> d là ước số của 2(2n + 3) = 4n + 6

(4n + 8) - (4n + 6) = 2

=> d là ước số của 2 => d=1,2

d = 2 không là ước số của số lẻ 2n+3 => d = 1

Vậy __________________

13 tháng 11 2016

kho qua

23 tháng 10 2017

a: Gọi a là UCLN(3n+1;6n+3) 

\(\Leftrightarrow\left\{{}\begin{matrix}6n+3⋮a\\6n+2⋮a\end{matrix}\right.\Leftrightarrow1⋮a\Leftrightarrow a=1\)

Vậy: 3n+1 và 6n+3 là hai số nguyên tố cùng nhau

b: Gọi a là UCLN(2n+1;6n+5)

\(\Leftrightarrow\left\{{}\begin{matrix}6n+5⋮a\\6n+3⋮a\end{matrix}\right.\Leftrightarrow2⋮a\)

mà 2n+1 là số lẻ

nên a=1

Vậy: 2n+1 và 6n+5 là hai số nguyên tố cùng nhau

3 tháng 1 2022

                                              Bài giải
 

a: Gọi a là UCLN(3n+1;6n+3) 

⇔⎧⎨⎩6n+3⋮a6n+2⋮a⇔1⋮a⇔a=1⇔{6n+3⋮a6n+2⋮a⇔1⋮a⇔a=1

Vậy: 3n+1 và 6n+3 là hai số nguyên tố cùng nhau

b: Gọi a là UCLN(2n+1;6n+5)

⇔⎧⎨⎩6n+5⋮a6n+3⋮a⇔2⋮a⇔{6n+5⋮a6n+3⋮a⇔2⋮a

mà 2n+1 là số lẻ

nên a=1

Vậy: 2n+1 và 6n+5 là hai số nguyên tố cùng nhau

AH
Akai Haruma
Giáo viên
17 tháng 12 2021

Lời giải:
a. Gọi $d$ là ƯCLN $(n+2, n+3)$

$\Rightarrow n+2\vdots d, n+3\vdots d$

$\Rightarrow (n+3)-(n+2)\vdots d$ hay $1\vdots d$

$\Rightarrow d=1$
Vậy $ƯCLN(n+2, n+3)=1$ hay $n+2, n+3$ nguyên tố cùng nhau.

b.

Gọi $d$ là ƯCLN $(2n+3, 3n+5)$

$\Rightarrow 2n+3\vdots d$ và $3b+5\vdots d$

$\Rightarrow 2(3n+5)-3(2n+3)\vdots d$

$\Rightarrow 1\vdots d\Rightarrow d=1$

Vậy $(2n+3,3n+5)=1$ nên 2 số này nguyên tố cùng nhau.

19 tháng 8 2023

Gọi d là ƯCLN(4n + 5; 2n + 2)

⇒ (4n + 5) ⋮ d

(2n + 2) ⋮ d ⇒ 2(2n + 2) ⋮ d ⇒ (4n + 4) ⋮ d

⇒ [(4n + 5) - (4n + 4)] ⋮ d

⇒ (4n + 5 - 4n - 4) ⋮ d

⇒ 1 ⋮ d

⇒ d = 1

Vậy 4n + 5 và 2n + 2 là hai số nguyên tố cùng nhau

19 tháng 8 2023

Gọi ước chung lớn nhất của 4n + 5 và 2n + 2 là: d

Ta có:  4n + 5 ⋮ d

            2n + 2 ⋮ d

       ⇒ 2.(2n+ 2) ⋮ d ⇒ 4n + 4  ⋮ d

        ⇒  4n + 5 - (4n + 4) ⋮ d

             4n + 5  - 4n - 4 ⋮ d 

                                 1 ⋮ d ⇒ d = 1

Ước chung lớn nhất của 4n + 5 và 2n + 2 là 1

Hay 4n + 5 và 2n + 2 là hai số nguyên tố cùng nhau

 

 

 

16 tháng 11 2020

e có 2 chia hết cho d; 2n+3 lẻ nên (2n+3,4n+8)=1

còn n+1-n=1 nên (n,n+1)=1

Goi d là ƯCLN ( 2n + 3 ; 4n + 8 )

\(\Rightarrow\) 2n + 3 và 4n + 8 chia hết cho d

\(\Rightarrow\) 2 . ( 2n + 3 ) chia hết cho d

          1 . ( 4n + 8 ) chia hết cho d

\(\Rightarrow\) 4n + 6 chia hết cho d 

           4n + 8 chia hết cho d

\(\Rightarrow\) 4n + 8 - ( 4n + 6 ) chia hết cho d

          4n + 8 - ( 4n - 6 ) chia hết cho d

Suy ra 2 chia hết cho d .

        d € Ư ( 2 ) = { 1 ; 2 }

Mà 2n + 3 không chia hết cho 2 . Suy ra d = 1

\(\Rightarrow\) ƯCLN ( 2n + 3 ; 3n + 4 ) = 1

Vậy 2n + 3 và 3n + 4 là 2 số nguyên tố cùng nhau .

1 tháng 8 2017

4n+8=2(2n+4)

2n+3,2n+4 ng tố cùng nhau 2 stn liên tiếp

 k mình nha