K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 11 2021

Ta có : khi a = b => a - b = 0

Khi a < b => a - b = a - ( a + n ) = a - a - n = 0 - n  ( n là hiệu b - a ; n khác 0 )

mà 0 - n < 0 => a - b < 0

20 tháng 2 2020

Ai giúp mình giải bài này cấy mình đang cần gấp có chi rồi mình tích đúng cho

20 tháng 2 2020

chuyển vế bớt 1 thằng qua

8 tháng 5 2015

a + b2 + c2 < 2

<=> a + b2 + c2 <  a+ b + c

<=> (a - a )+ (b2 - b )+ (c2 - c) < 0

<=> a.(a - 1) + b.(b -1) + c.(c -1) < 0   (*)

Điều này luôn đúng với mọi 0<a<1; 0<b<1; 0<c<1  vì 0<a<1 => a- 1 < 0 => a.(a-1) < 0

tương tự b(b - 1) < 0; c(c -1) < 0

Vậy (*) => đpcm

NV
15 tháng 6 2020

\(0< a< 1\Rightarrow a-1< 0\Rightarrow a\left(a-1\right)< 0\Rightarrow a^2< a\)

Tương tự: \(b\left(b-1\right)< 0\Rightarrow b^2< b\) ; \(c\left(c-1\right)< 0\Rightarrow c^2< c\)

Cộng vế với vế:

\(a^2+b^2+c^2< a+b+c\Rightarrow a^2+b^2+c^2< 2\) (đpcm)

16 tháng 6 2019

Theo bài ra ta có : ( so sánh )

\(\frac{a}{b};\frac{a+2019}{b+2019}\)(0<a<b)

=> \(\frac{a}{b}=1-\frac{b-a}{b};\)

\(\frac{a+2019}{b+2019}=1-\frac{\left(b+2019\right)-\left(a+2019\right)}{b+2019}=1-\frac{b-a}{b+2019}\)

ta thấy

\(\frac{a-b}{b}>\frac{a-b}{b+2019}\)

=> \(\frac{a}{b}< \frac{a+2019}{b+2019}\)

\(\frac{b-a}{b}>\frac{b-a}{b+2019}\)

16 tháng 6 2019

làm hơi tắt :))

8 tháng 4 2019

Theo t thì điều kiện thế này:\(-1< a,b,c< 1\)

Vì  \(a+b+c=0;-1< a,b,c< 1\) nên trong các số a,b,c thì tồn tại 2 số có cùng dấu.Giả sử \(a>0;b>0;c< 0\)

\(a+b+c=0\Rightarrow c=-\left(a+b\right)\)

Do  \(a+b+c=0;-1< a,b,c< 1\)  nên:\(a^2+b^2+c^2< \left|a\right|+\left|b\right|+\left|c\right|\)

\(\Rightarrow a^2+b^2+c^2< a+b-z\)

\(\Rightarrow a^2+b^2+c^2< -2z< 2\)

\(\Rightarrowđpcm\)

5 tháng 9 2018

bạn nói rõ một tí nữa đi

5 tháng 9 2018

mình không hiểu

29 tháng 4 2020

1, Vì m > 2

\(\Rightarrow\) m - 2 > 2 - 2

\(\Rightarrow\) m(m - 2) > m(2 - 2)

\(\Rightarrow\) m2 - 2m > 0

a < 0; b < 0; a > b

\(\Rightarrow\) \(\frac{1}{a}< \frac{1}{b}\) (Vì mẫu a > b nên phân số \(\frac{1}{a}< \frac{1}{b}\))

Bạn ơi, đề cho a > b thì làm sao chứng minh được a \(\ge\) b hả bạn

Chúc bn học tốt!!

Tham khảo chỗ này nè: Tui mới làm xong luôn :))

Câu hỏi của SSBĐ Love HT - Toán lớp 8 - Học toán với OnlineMath

4 tháng 2 2020

\(0< a< 1\Rightarrow a^2< a\)

Tương tự: \(b^2< b;c^2< c\)

=> a^2+b^2+c^2<a+b+c=2

4 tháng 2 2020

Ta có: \(0< a< 1\)

\(\Rightarrow a-1< 0\)

\(\Rightarrow a^2-a< 0\left(1\right)\)

Tương tự ta có: \(0< b< 1\Rightarrow b^2-b=a\left(2\right)\)

Và: \(0< c< 1\Rightarrow c^2-c< 0\left(3\right)\)

Cộng: \(\left(1\right)\left(2\right)\left(3\right)\) vế theo vế ta được:

\(a^2+b^2+c^2-a-b-c< 0\)

\(\Leftrightarrow a^2+b^2+c^2< a+b+c\)

\(\Leftrightarrow a^2+b^2+c^2< 2\left(a+b+c=2\right)\)