GGiải giúp mình nha!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
BĐT\(\Leftrightarrow\left(x^2+y^2\right)^3\le2\left(x^3+y^3\right)^2\)( đúng theo BĐT holder)
Hay AM-GM:
\(\dfrac{x^3}{x^3+y^3}+\dfrac{x^3}{x^3+y^3}+\dfrac{1}{2}\ge3\sqrt[3]{\dfrac{x^6}{2\left(x^3+y^3\right)^2}}=\dfrac{3x^2}{\sqrt[3]{2\left(x^3+y^3\right)^2}}\)
\(\dfrac{y^3}{x^3+y^3}+\dfrac{y^3}{x^3+y^3}+\dfrac{1}{2}\ge\dfrac{3y^2}{\sqrt[3]{2\left(x^3+y^3\right)^2}}\)
Cộng theo vế:
\(3\ge\dfrac{3\left(x^2+y^2\right)}{\sqrt[3]{2\left(x^3+y^3\right)^2}}\Leftrightarrow2\left(x^3+y^3\right)^2\ge\left(x^2+y^2\right)^3\)
Dấu = xảy ra khi x=y
Lời giải:
BĐT cần chứng minh tương đương với:
\(2(x^3+y^3)^2\geq (x^2+y^2)^3\)
Áp dụng BĐT Cauchy-Schwarz:
\((x^3+y^3)(x+y)\geq (x^2+y^2)^2\Rightarrow x^3+y^3\geq \frac{(x^2+y^2)^2}{(x+y)}\)
\(\Leftrightarrow 2(x^3+y^3)^2\geq \frac{2(x^2+y^2)^4}{(x+y)^2}\)
Theo BĐT Am-Gm:
\((x+y)^2\leq 2(x^2+y^2)\Rightarrow 2(x^3+y^3)^2\geq \frac{2(x^2+y^2)^4}{2(x^2+y^2)}=(x^2+y^2)^3\)
Ta có đpcm.
Dấu bằng xảy ra khi \(x=y\)
Vì gương cầu lõm có thể biến đổi chùm tia song song thành chùm tia hội tụ trước gương . Nên có thể tập trung nhiệt lượng vào một điểm
=> Mẩu giấy có thể cháy
vì nó biến chùm song song thành chùm hội tụ khi tụ vào một điểm gương sẽ tập trung lượng nhiệt(mình đọc sách thấy ông acsimet làm thế này để giết giặc)
Các bạn giúp mình nha môn âm nhạc lớp 6
Tập đọc nhạc số 4 mấy bạn viết lời dùm mình nha giúp mình nha
x-1=3 hoặc x-1=-3
=>x=4 => x=-2
............................
học tốt!!!!!!!!!!!!!!
\(\left|x-1\right|=3\)
\(\Leftrightarrow\orbr{\begin{cases}x-1=3\\x-1=-3\end{cases}\Leftrightarrow\orbr{\begin{cases}x=4\\x=-2\end{cases}}}\)
Vậy x=4; x=-2