Tìm Min \(H=\dfrac{x^2-x+1}{x^2-2x+1}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
\(G=\dfrac{2}{x^2+8}\le\dfrac{2}{8}=\dfrac{1}{4}\)
\(G_{max}=\dfrac{1}{4}\) khi \(x=0\)
\(H=\dfrac{-3}{x^2-5x+1}\) biểu thức này ko có min max
2.
\(D=\dfrac{2x^2-16x+41}{x^2-8x+22}=\dfrac{2\left(x^2-8x+22\right)-3}{x^2-8x+22}=2-\dfrac{3}{\left(x-4\right)^2+6}\ge2-\dfrac{3}{6}=\dfrac{3}{2}\)
\(D_{min}=\dfrac{3}{2}\) khi \(x=4\)
\(E=\dfrac{4x^4-x^2-1}{\left(x^2+1\right)^2}=\dfrac{-\left(x^4+2x^2+1\right)+5x^4+x^2}{\left(x^2+1\right)^2}=-1+\dfrac{5x^4+x^2}{\left(x^2+1\right)^2}\ge-1\)
\(E_{min}=-1\) khi \(x=0\)
\(G=\dfrac{3\left(x^2-4x+5\right)-5}{x^2-4x+5}=3-\dfrac{5}{\left(x-2\right)^2+1}\ge3-\dfrac{5}{1}=-2\)
\(G_{min}=-2\) khi \(x=2\)
\(B=\dfrac{x^2+x}{x^2+x+1}=\dfrac{3x^2+3x}{3\left(x^2+x+1\right)}=\dfrac{-\left(x^2+x+1\right)+4x^2+4x+1}{3\left(x^2+x+1\right)}\)
\(=-\dfrac{1}{3}+\dfrac{\left(2x+1\right)^2}{3\left(x+\dfrac{1}{2}\right)^2+\dfrac{9}{4}}\ge-\dfrac{1}{3}\)
\(B_{min}=-\dfrac{1}{3}\) khi \(x=-\dfrac{1}{2}\)
\(P=\dfrac{1}{\left(x+1\right)^2+5}\le\dfrac{1}{5}\)
\(P_{max}=\dfrac{1}{5}\) khi \(x+1=0\Rightarrow x=-1\)
\(Q=\dfrac{x^2+x+1}{x^2+2x+1}=\dfrac{4x^2+4x+4}{4\left(x+1\right)^2}=\dfrac{3\left(x^2+2x+1\right)+x^2-2x+1}{4\left(x+1\right)^2}=\dfrac{3}{4}+\dfrac{\left(x-1\right)^2}{4\left(x+1\right)^2}\)
\(Q_{min}=\dfrac{3}{4}\) khi \(x-1=0\Rightarrow x=1\)
1: \(x^2+2x+6=x^2+2x+1+5=\left(x+1\right)^2+5>=5\forall x\)
=>\(P=\dfrac{1}{x^2+2x+6}< =\dfrac{1}{5}\forall x\)
Dấu '=' xảy ra khi x+1=0
=>x=-1
$A=2x-\sqrt{x}=2(x-\frac{1}{2}\sqrt{x}+\frac{1}{4^2})-\frac{1}{8}$
$=2(\sqrt{x}-\frac{1}{4})^2-\frac{1}{8}$
$\geq \frac{-1}{8}$
Vậy $A_{\min}=-\frac{1}{8}$. Giá trị này đạt tại $x=\frac{1}{16}$
$B=x+\sqrt{x}$
Vì $x\geq 0$ nên $B\geq 0+\sqrt{0}=0$
Vậy $B_{\min}=0$. Giá trị này đạt tại $x=0$
Bài 2:
\(A=\dfrac{2}{-x^2-2x-2}=\dfrac{-2\left(-x^2-2x-2\right)-2x^2-4x-2}{-x^2-2x-2}\) \(=-2+\dfrac{2\left(x+1\right)^2}{-x^2-2x-2}\ge-2\)
Dấu bằng xảy ra \(\Leftrightarrow x+1=0\Leftrightarrow x=-1\)
Vậy \(A_{Min}=-2\) khi \(x=-1\)
Bài 1:
a) Ta có: \(2x^2-6=0\)
\(\Leftrightarrow2x^2=6\)
\(\Leftrightarrow x^2=3\)
hay \(x\in\left\{\sqrt{3};-\sqrt{3}\right\}\)
Vậy: \(S=\left\{\sqrt{3};-\sqrt{3}\right\}\)
a.
\(y'=\dfrac{2-x}{2x^2\sqrt{x-1}}=0\Rightarrow x=2\)
\(y\left(1\right)=0\) ; \(y\left(2\right)=\dfrac{1}{2}\) ; \(y\left(5\right)=\dfrac{2}{5}\)
\(\Rightarrow y_{min}=y\left(1\right)=0\)
\(y_{max}=y\left(2\right)=\dfrac{1}{2}\)
b.
\(y'=\dfrac{1-3x}{\sqrt{\left(x^2+1\right)^3}}< 0\) ; \(\forall x\in\left[1;3\right]\Rightarrow\) hàm nghịch biến trên [1;3]
\(\Rightarrow y_{max}=y\left(1\right)=\dfrac{4}{\sqrt{2}}=2\sqrt{2}\)
\(y_{min}=y\left(3\right)=\dfrac{6}{\sqrt{10}}=\dfrac{3\sqrt{10}}{5}\)
c.
\(y=1-cos^2x-cosx+1=-cos^2x-cosx+2\)
Đặt \(cosx=t\Rightarrow t\in\left[-1;1\right]\)
\(y=f\left(t\right)=-t^2-t+2\)
\(f'\left(t\right)=-2t-1=0\Rightarrow t=-\dfrac{1}{2}\)
\(f\left(-1\right)=2\) ; \(f\left(1\right)=0\) ; \(f\left(-\dfrac{1}{2}\right)=\dfrac{9}{4}\)
\(\Rightarrow y_{min}=0\) ; \(y_{max}=\dfrac{9}{4}\)
d.
Đặt \(sinx=t\Rightarrow t\in\left[-1;1\right]\)
\(y=f\left(t\right)=t^3-3t^2+2\Rightarrow f'\left(t\right)=3t^2-6t=0\Rightarrow\left[{}\begin{matrix}t=0\\t=2\notin\left[-1;1\right]\end{matrix}\right.\)
\(f\left(-1\right)=-2\) ; \(f\left(1\right)=0\) ; \(f\left(0\right)=2\)
\(\Rightarrow y_{min}=-2\) ; \(y_{max}=2\)
Đặt \(x+1=t\Rightarrow x=t-1\)
\(P=\dfrac{3\left(t-1\right)^2-2\left(t-1\right)-1}{t^2}=\dfrac{3t^2-8t+4}{t^2}=\dfrac{4}{t^2}-\dfrac{8}{t}+3=4\left(\dfrac{1}{t}-1\right)^2-1\ge-1\)
\(P_{min}=-1\) khi \(t=1\Rightarrow x=0\)
`sqrt{x-2}-2>=sqrt{2x-5}-sqrt{x+1}`
`đk:x>=5/2`
`bpt<=>\sqrt{x-2}+\sqrt{x+1}>=\sqrt{2x-5}+2`
`<=>x-2+x+1+2\sqrt{(x-2)(x+1)}>=2x-5+4+4\sqrt{2x-5}`
`<=>2x-1+2\sqrt{(x-2)(x+1)}>=2x-1+4\sqrt{2x-5}`
`<=>2\sqrt{(x-2)(x+1)}>=4\sqrt{2x-5}`
`<=>sqrt{x^2-x-2}>=2sqrt{2x-5}`
`<=>x^2-x-2>=4(2x-5)`
`<=>x^2-x-2>=8x-20`
`<=>x^2-9x+18>=0`
`<=>(x-3)(x-6)>=0`
`<=>` \(\left[ \begin{array}{l}x \ge 6\\x \le 3\end{array} \right.\)
Kết hợp đkxđ:
`=>` \(\left[ \begin{array}{l}x \ge 6\\\dfrac52 \le x \le 3\end{array} \right.\)
Ta có x2-x+1=x2-x+1/4+3/4=(x-1/2)2+3/4
Lại có (x-1/2)2≥0 với ∀ x =>(x-1/2)2+3/4≥3/4
Ta có x2-2x+1=(x-1)2≥0 với ∀ x
Vì (x-1)2 là mẫu số nên (x-1)2 ≠0
Ta có H đạt GTNN <=> (x-1/2)2+3/4 đạt GTNN và (x-1)2 đạt GTLN
Ta có (x-1/2)2+3/4≥3/4. Dấu ''='' xảy ra <=>(x-1/2)2=0
<=>x-1/2=0 <=>x=1/2
Thay vào, ta có H=3/4/1/4=3/16
Vậy Min H=3/16 tại x=1/2
\(H=\dfrac{x^2-x+1}{x^2-2x+1}=\dfrac{4x^2-4x+4}{4\left(x^2-2x+1\right)}=\dfrac{3\left(x^2-2x+1\right)+x^2+2x+1}{4\left(x^2-2x+1\right)}=\dfrac{3}{4}+\dfrac{\left(x+1\right)^2}{4\left(x-1\right)^2}\ge\dfrac{3}{4}\)
\(H_{min}=\dfrac{3}{4}\) khi \(x=-1\)