l i m x → - ∞ x 2 + 2 x + 3 x 4 x 2 + 1 - x + 2 bằng
A. 2/3
B. -1/2
C. 1/2
D. 2/3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\left(x+1\right)\left(x^2-x+1\right)-\left(x-1\right)\left(x^2+x+1\right)\) \(=x^3+1-x^3+1=2\)
\(b,x\left(x-4\right)\left(x+4\right)-\left(x^2+1\right)\left(x^2-1\right)\)
\(=x\left(x^2-16\right)-\left(x^4-1\right)=x^3-16x-x^4+1\) \(c,\left(x-3\right)\left(x+3\right)-\left(x+1\right)^2\)
\(=x^2-9-x^2-2x-1=-2x-10\)
\(d,\left(4x-3\right)\left(4x+3\right)-16x^2\)
\(=16x^2-9-16x^2=-9\)
\(e,\left(x+4\right)\left(x^2-4x+16\right)-x^3=x^3+64-x^3=64\)
Bài 1:
Từ P(x) = 3x2+8x-4 = -4
=> 3x2+8x = 0
x(3x+8) = 0
=> x = 0 3x+8 = 0
=> x = 0 3x = 8
=> x = 8/3
Bài 2 :
Ta có x = -1 là nghiệm của đa thức f(x) = 2x2-x+m
=> f(-1) = 2(-1)2-(-1)+m = 0
=> 2+1+m = 0
=> 3+m = 0
m = 0-3
m = -3
b) Giải:
Ta có: \(4x+3⋮x-2\)
\(\Rightarrow4x-8+11⋮x-2\)
\(\Rightarrow4\left(x-2\right)+11⋮x-2\)
\(\Rightarrow11⋮x-2\)
\(\Rightarrow x-2\in\left\{1;-1;11;-11\right\}\)
\(\left[\begin{matrix}x-2=1\\x-2=-1\\x-2=11\\x-2=-11\end{matrix}\right.\Rightarrow\left[\begin{matrix}x=3\\x=1\\x=13\\x=-9\end{matrix}\right.\)
Vậy \(x\in\left\{3;1;13;-9\right\}\)
b.Ta có:(4x+3)=4x-4.2+8+3
=4(x-2)+11
Để(4x+3)chia hết cho (x-2)
#11chia hết cho (x-2)(#là khi và chỉ khi nhế!)
#x-2€ Ư(11)={±1;±11}
#x€{3;1;13;-9}
Vậy x€{3;1;13;-9}
Em muốn nhanh thì em chia nhỏ câu hỏi ra để nhiều người trợ giúp cùng một lúc như vậy hiệu quả cao, chi tiết và nhanh chóng em nhé.
a, \(-\left(x+3\right)\left(x-4\right)+\left(x+1\right)\left(x-1\right)=10\)
\(\Rightarrow-\left(x^2-4x+3x-12\right)+x^2-1=10\)
\(\Rightarrow-x^2+x+12+x^2-1=10\)
\(\Rightarrow x=10+1-12\Rightarrow x=-1\)
b, \(\left(2x-1\right)\left(x-2\right)-\left(x+3\right)\left(2x-7\right)=3\)
\(\Rightarrow2x^2-4x-x+2-\left(2x^2-7x+6x-21\right)=3\)
\(\Rightarrow2x^2-5x+2-2x^2+x+21=3\)
\(\Rightarrow-4x=3-21-2\Rightarrow-4x=-20\)
\(\Rightarrow x=5\)
Các câu còn lại làm tương tự! Phá ngoặc ra!
Chúc bạn học tốt!!!
a, Đặt (x2 +x ) = t ta có:
=> t2 + 4t - 12 = 0
=> ( t + 2)2 - 16 = 0
=> ( t + 2)2 - 42 = 0
=> ( t -2)( t + 6) = 0
=>\(\left[{}\begin{matrix}t-2=0\\t+6=0\end{matrix}\right.\)
Thay t = x2 + x
- x2 + x -2 = 0 => (x+2)(x-1) = 0 => \(\left[{}\begin{matrix}x=-2\\x=2\end{matrix}\right.\)
- x2 + x + 6 = 0 => (x+3)(x-2) = 0 => \(\left[{}\begin{matrix}x=-3\\x=2\end{matrix}\right.\)
Chọn A