K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 7 2017

Chọn A

29 tháng 10 2023

\(u_n=\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+...+\dfrac{1}{n\left(n+1\right)}\)

\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{n}-\dfrac{1}{n+1}\)

\(=1-\dfrac{1}{n+1}< 1\)

=>Hàm số bị chặn trên tại \(u_n=1\)

\(n+1>=1\)

=>\(\dfrac{1}{n+1}< =1\)

=>\(-\dfrac{1}{n+1}>=-1\)

=>\(1-\dfrac{1}{n+1}>=-1+1=0\)

=>Hàm số bị chặn dưới tại 0

\(u_n=1-\dfrac{1}{n+1}=\dfrac{n+1-1}{n+1}=\dfrac{n}{n+1}\)

\(\dfrac{u_n}{u_{n+1}}=\dfrac{n}{n+1}:\dfrac{n+1}{n+2}=\dfrac{n^2+2n}{n^2+2n+1}< 1\)

=>(un) là dãy số tăng

 

15 tháng 10 2023

a: \(\dfrac{u_n}{u_{n-1}}=\dfrac{3^n}{2^{n+1}}:\dfrac{3^{n-1}}{2^n}\)

\(=\dfrac{3^n}{3^{n-1}}\cdot\dfrac{2^n}{2^{n+1}}=\dfrac{3}{2}>1\)

=>(un) là dãy tăng

c: ĐKXĐ: n>=1

\(u_n=\sqrt{n}-\sqrt{n-1}\)

\(=\dfrac{1}{\sqrt{n}+\sqrt{n-1}}\)

\(\dfrac{u_n}{u_{n-1}}=\dfrac{1}{\sqrt{n}+\sqrt{n-1}}:\dfrac{1}{\sqrt{n-1}+\sqrt{n-2}}\)

\(=\dfrac{\sqrt{n-1}+\sqrt{n-2}}{\sqrt{n-1}+\sqrt{n}}< 1\)

=>Đây là dãy số giảm

26 tháng 9 2019

Xét hiệu:  u n + 1 − u n = 2 n + 1 n + 4 − 2 n − 1 n + 3

= 2 n 2 + 7 n + 3 − 2 n 2 − 7 n + 4 n + 4 n + 3 = 7 n + 4 n + 3 > 0 ; ∀ n ∈ N *

Vậy: ( u n ) là dãy số tăng.

Ta có  u n = 2 n − 1 n + 3 = 2 ( n + 3 ) − 7 n + 3 = 2 − 7 n + 3

 Suy ra: ∀ n ∈ ℕ * , u n < 2  nên   ( u n )  bị chặn trên.

 Vì  ( u n ) là dãy số tăng ∀ n ∈ ℕ * , u 1 = 1 4 ≤ u n  nên  ( u n )  bị chặn dưới. Vậy  ( u n )  bị chặn.

Chọn đáp án C.

10 tháng 9 2023

\(u_n=\dfrac{3^n-1}{2^n}\)

\(\Rightarrow u_{n+1}=\dfrac{3^{n+1}-1}{2^{n+1}}\)

\(\Rightarrow u_{n+1}-u_n=\dfrac{3^{n+1}-1}{2^{n+1}}-\dfrac{3^n-1}{2^n}\)

\(\Rightarrow u_{n+1}-u_n=\dfrac{2^n.3^{n+1}-2^n-2^{n+1}.3^n+2^{n+1}}{2^n.2^{n+1}}\)

\(=\dfrac{2^n.3^n\left(3-2\right)-2^n\left(2-1\right)}{2^{2n+1}}\)

\(=\dfrac{2^n.\left(3^n-1\right)}{2^{2n+1}}\)

\(=\dfrac{\left(3^n-1\right)}{2}>0\left(n>1\right)\)

Vậy dãy \(u_n\)đã cho tăng

9 tháng 2 2018

Giải bài 7 trang 107 sgk Đại số 11 | Để học tốt Toán 11

+ Xét tính tăng giảm.

Với mọi n ∈ N ta có:

Giải bài 7 trang 107 sgk Đại số 11 | Để học tốt Toán 11

⇒ un + 1 < un với mọi n ∈ N.

⇒ (un) là dãy số giảm.

+ Xét tính bị chặn.

un > 0 với mọi n.

⇒ (un) bị chặn dưới.

un ≤ u1 = √2 - 1 với mọi n

⇒ (un) bị chặn trên.

⇒ (un) bị chặn.

20 tháng 5 2019

Ta có  u n = n − 1 n + 1 = 1 − 2 n + 1

Xét hiệu  u n + 1 − u n = 1 − 2 n + 2 − 1 − 2 n + 1

= 2 n + 1 − 2 n + 2 =    2 ( ​ n + 2 ) − 2 ( n + 1 ) ( n + 1 ) . ( n + 2 ) = 2 ( n + 1 ) ( n + 2 ) > 0    ∀ n ∈ ℕ *

Kết luận dãy số ( u n )   là dãy số tăng.

Chọn đáp án D.

10 tháng 9 2023

\(u_n=\sqrt[]{n+10}-\sqrt[]{n+2}\)

\(\Leftrightarrow u_n=\dfrac{n+10-\left(n+2\right)}{\sqrt[]{n+10}+\sqrt[]{n+2}}\)

\(\Leftrightarrow u_n=\dfrac{8}{\sqrt[]{n+10}+\sqrt[]{n+2}}\)

\(u_{n+1}=\sqrt[]{n+11}-\sqrt[]{n+3}\)

\(\Leftrightarrow u_{n+1}=\dfrac{n+11-\left(n+3\right)}{\sqrt[]{n+11}+\sqrt[]{n+3}}\)

\(\Leftrightarrow u_{n+1}=\dfrac{8}{\sqrt[]{n+11}+\sqrt[]{n+3}}\)

\(u_{n+1}-u_n=8\left(\dfrac{1}{\sqrt[]{n+11}+\sqrt[]{n+3}}-\dfrac{1}{\sqrt[]{n+10}+\sqrt[]{n+2}}\right)\)

mà \(\dfrac{1}{\sqrt[]{n+11}+\sqrt[]{n+3}}< \dfrac{1}{\sqrt[]{n+10}+\sqrt[]{n+2}}\)

\(\Rightarrow u_{n+1}-u_n< 0\)

Vậy dãy đã cho là dãy số giảm

22 tháng 3 2018

Giải bài 4 trang 92 sgk Đại số 11 | Để học tốt Toán 11

Với mọi n ∈ N có:

Giải bài 4 trang 92 sgk Đại số 11 | Để học tốt Toán 11

⇒ (un) là dãy số tăng.