Tam giác ABC vuông đỉnh A có A B C ^ = 60o và AB = a. Quay miền trong và các cạnh của tam giác ABC quanh trục AB thì ta được khối nón (N). Thể tích của khối nón (N) là:
A. πa 3 3 3
B. πa 3
C. 3 πa 3
D. πa 3 3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án C
Theo cách xây dựng hình nón ta có đường sinh của hình nón là: l = BC = a.
Bán kính đáy của hình nón là: r = AC = BC.sin45o = a/ 2
Vậy ta có diện tích xung quanh của hình nón (N) là:
Đáp án B
Đặt AC = a, ta có AB = 2a => BC = a 5 . Khi đó ta có:
Đáp án C.
Ta có A M = A B 2 − B C 2 2 = 2 a . Khi quay tam giác quanh trục MA thì ta được hình nón có bán kính r = a , đường cao h = 2 a . Thể tích khối nón là V = 1 3 π r 2 h = 2 3 π a 3 .
Đáp án A
Ta có chiều cao của khối nón bán kính hình tròn đáy lần lượt là
h = AB = a và r = AC =
Suy ra thể tích của khối nón là
Phân tích phương án nhiễu.
Phương án B: Sai do HS thiếu 1 3 trong công thức tính thể tích.
Phương án C: Sai do HS xác định h = a 3 và bán kính đáy r = a nên
Phương án D: Sai do HS nhớ sai công thức tính thể tích khối nón
Đáp án B
Từ giả thiết ta có: h = AB = a; r = AC = atan60o = a 3 => (1/3).π r 2 h = π a 3